首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang J  Zhou X  Zhang Y 《Biotechnology letters》2004,26(12):1013-1017
In recombinant Pichia pastoris fermentation for hirudin production in a 5 l fermenter, a new strategy was explored to match the short fermentation time at low NH4+ concentration with decreased hirudin degradation at high NH4+ concentration. A combination of a defined medium containing initial 0.025 m NH4+ with NH4+ addition up to 0.6 m in the growth phase was achieved in both the improvement of hirudin production and the repression of hirudin degradation. Intact and total hirudin reached 2.63 g l(-1) and 4.25 g l(-1), respectively.  相似文献   

2.
Summary Recombinant Saccharomyces cerevisiae was employed to continuously produce hirudin in a membrane cell recycle fermentor. The gene cooing for the anticoagulant protein was combined with the GAL10 promoter for controlled expression and the MF 1 signal sequence for secretion to the fermentation broth. A dilution rate of 0.1h–1 yielded a maximum hirudin concentration of 59mg / l with a specific hirudin concentration of 2.4 mg /g cell mass among dilution rates studied ranging from 0.05h–1 to 0.3h–1. Cell bleeding gave the same fermentation results as cell recycle fermentation without cell bleeding. The productivity of the cell recycle fermentation process was 6.0mg hirudin/l · hr, corresponding to a 1.7-fold increase compared with a conventional continuous culture.  相似文献   

3.
In this work, an immobilization method for polymer-levan production by a non-flocculating Z mobilis culture was developed. The extent of cell attachment to the stainless steel wire surface, culture growth and product synthesis were described. It was established that during short-term passive immobilization of non-flocculation Z mobilis cells on a stainless steel wire surface, sufficient amounts of biomass for proper levan and ethano fermentation could not be obtained. Adherence of cells was improved by pressing the paste-like biomass within stainless steel spheres knitted from wire with subsequent dehydration. Biomass fixed in metal spheres was used for repeated batch fermentation of levan. The activation period of cells within wire spheres (WS) was 48 h in duration. During this time, cell growth stabilized at production levels of ethanol and levan of Qeth = 1.238 g/l × h and qeth = 0.47 g/l × h; Qeth = 0.526 g/l × h and qeth = 0.20 g/l × h. Five stable fermentation cycles were realized using one wire sphere inoculum, and maintaining a stable ratio of 2.4 of biomass suspended in the medium to biomass fixed in the sphere. Using fixed Z mobilis biomass in the WS, the total amount of inoculum could be reduced for batch fermentation. Large plaited wire spheres with biomass may have potential in fermentation in viscous systems, including levan production.  相似文献   

4.
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30°C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87–0.97 g/g starch associated with 1.5–2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.  相似文献   

5.
Summary The enriched medium based on yeast nitrogen basc(YNB)increased hirudin synthesis and secretion in rccombinant Saccharomyces cerevisiae in batch and fed-batch cultures. Fed-batch fermentation with the defined medium yielded 342mg hirudin/l but supplementation of yeast extract increased the final hirudin concentration to 461mg hirudin/l. The defined medium, however, produced the product protein with higher purity of 21% and hence will allow easy separation of secreted hirudin from other contaminated polypeptides present in the growth medium. In a continuous culuture, the defined medium yielded higher concentrations of cell mass and hirudin than the complex medium.  相似文献   

6.
By extensive microbial screening, about 50 strains with the ability to secrete gluconic acid were isolated from wild flowers. The strains belong to the yeast-like mould Aureobasidium pullulans (de Bary) Arnaud. In shake flask experiments, gluconic acid concentrations between 23 and 140 g/l were produced within 2 days using a mineral medium. In batch experiments, various important fermentation parameters influencing gluconic acid production by A. pullulans isolate 70 (DSM 7085) were identified. Continuous production of gluconic acid with free-growing cells of the isolated yeast-like microorganisms was studied. About 260 g/l gluconic acid at total glucose conversion could be achieved using continuous stirred tank reactors in defined media with residence times (RT) of about 26 h. The highest space-time-yield of 19.3 g l(-1) x h(-1)) with a gluconic acid concentration of 207.5 g/l was achieved with a RT of 10.8 h. The possibility of gluconic acid production with biomass retention by immobilised cells on porous sinter glass is discussed. The new continuous gluconate fermentation process provides significant advantages over traditional discontinuous operation employing Aspergillus niger. The aim of this work was the development of a continuous fermentation process for the production of gluconic acid. Process control becomes easier, offering constant product quality and quantity.  相似文献   

7.
Ergosterol is an economically important metabolite produced by fungi. Recombinant Saccharomyces cerevisiae YEH56(pHXA42) with increased capacity of ergosterol formation was constructed by combined overexpression of sterol C-24(28) reductase and sterol acyltransferase in the yeast strain YEH56. The production of ergosterol by this recombinant strain using cane molasses (CM) as an inexpensive carbon source was investigated. An ergosterol content of 52.6 mg/g was obtained with 6.1 g/l of biomass from CM medium containing 60 g/l of total sugar in 30 h in shake flask. The ergosterol yield was enhanced through the increasing cell biomass by supplementation of urea to a concentration of 6 g/l in molasses medium. Fermentation was performed in 5-l bioreactor using the optimized molasses medium. In batch fermentation, the effect of agitation velocity on ergosterol production was examined. The highest ergosterol yield was obtained at 400 rpm that increased 60.4 mg/l in comparison with the shake flask culture. In fed-batch fermentation, yeast cells were cultivated, firstly, in the starting medium containing molasses with 20 g/l of total sugar, 1.68 g/l of phosphate acid, and 6 g/l of urea (pH 5.4) for 5 h, then molasses containing 350 g/l of total sugar was fed exponentially into the bioreactor to keep the ethanol level in the broth below 0.5%. After 40 h of cultivation, the ergosterol yield reached 1,707 mg/l, which was 3.1-fold of that in the batch fermentation.  相似文献   

8.
The sulfuric acid hydrolysate of lignocellulosic biomass, such as wood chips, from the forest industry is an important material for fuel bioethanol production. In this study, we constructed a recombinant yeast strain that can ferment xylose and cellooligosaccharides by integrating genes for the intercellular expressions of xylose reductase and xylitol dehydrogenase from Pichia stipitis, and xylulokinase from Saccharomyces cerevisiae and a gene for displaying β-glucosidase from Aspergillus acleatus on the cell surface. In the fermentation of the sulfuric acid hydrolysate of wood chips, xylose and cellooligosaccharides were completely fermented after 36 h by the recombinant strain, and then about 30 g/l ethanol was produced from 73 g/l total sugar added at the beginning. In this case, the ethanol yield of this recombinant yeast was much higher than that of the control yeast. These results demonstrate that the fermentation of the lignocellulose hydrolysate is performed efficiently by the recombinant Saccharomyces strain with abilities for xylose assimilation and cellooligosaccharide degradation.  相似文献   

9.
Fu W  Lin J  Cen P 《Bioresource technology》2008,99(11):4864-4870
5-Aminolevulinate (ALA) production with recombinant Escherichia coli Rosetta (DE3)/pET28a(+)-hemA was studied. In batch fermentation, the addition of glucose and glycine was effective to improve ALA production. Then the fed-batch fermentation was conducted with continuous feeding of precursors. When the concentrations of succinic acid and glycine were 7.0 g/l and 4.0 g/l, respectively, in the feeding, the ALA yield reached 4.1g/l. But the molar yield (ALA/glycine) was decreased in the fed-batch fermentation compared to batch fermentation. And it was found that the pH control during fed-batch cultivation was very important for the cell growth and ALA production. A two-stage pH value controlling strategy was suggested, in which, the pH value in the first 6h was regulated at pH 5.9, after then at pH 6.2, and the ALA yield was as high as 6.6g/l via fed-batch fermentation.  相似文献   

10.
An unstructured model based on logistic and Luedeking-Piret equations was proposed to describe growth, substrate consumption and kojic acid production by Aspergillus flavus Link strain 44-1 in batch fermentation and also in a resuspended cell system. The model showed that kojic acid production was non-growth associated. The maximum kojic acid and cell concentrations obtained in batch fermentations using the fermenter with optimized dissolved oxygen control (32.5 g/l and 11.8 g/l, respectively) and using a shake-flask (36.5 and 12.3 g/l, respectively) were not significantly different. However, the maximum specific growth rate and a non-growth-associated rate constant for kojic acid formation (n) for batch fermentation using the fermenter (0.085/h and 0.0125 g kojic acid/g cell.h, respectively) were approximately three and two times higher than the values obtained for fermentation using a shake-flask, respectively. Efficient conversion of glucose to kojic acid was achieved in a resuspended pellet or mycelial system, in a solution containing only glucose with citrate buffer at pH 3.5 and at a temperature of 30 °C. The resuspended cell material in the glucose solution was still active in synthesizing kojic acid after prolonged incubation (up to about 600 h). The rate constant of kojic acid production (n) in a resuspended cell system using 100 g glucose/l was almost constant at an average value of 0.011 g kojic acid/g cell.h up to a cell concentration of 19.2 g/l, above which it decreased. A drastic reduction of n was observed at a cell concentration of 26.1 g/l. However, the yield based on glucose consumed (0.45 g/g) was similar for all cell concentrations investigated.  相似文献   

11.
The reusability of biomass in lactic acid batch fermentation with free cells of Lactobacillus paracasei was studied in a 2–1 fermenter and in a 50-1 fermenter. In lab-scale fermentation experiments, 33 to 100% of the cell mass formed was reused in the subsequent batch in each case. In a series of seven consecutive batches, maximum values of lactate formation productivity of 6.32 to 11.54 g/l × h were observed at initial cell concentrations of 2.1 to 24.6 g/l. In all of the experiments, the initial cell viability was 78% or greater than 78%, and the final cell viability did not fall below 70%. At cell concentrations above 20 g/l, the productivity of lactic acid formation did not increase further, but remained constant. Because its level could be influenced by varying the proportions between the content of yeast extract, peptone and initial cell mass (1:1:2, 1:1:1 and 3.3.1) in the medium and no inhibitory effects were observed, this finding can be attributed to nutrient limitation. A low degree of cell reuse was reached in an analogous series of experiments carried out in a 50-1 fermenter. In this case, the initial cell concentration varied between 0.5 and 1.1 g/l, and therefore cell growth was not limited by nutrients in the first period of fermentation. Lactate production was still stable after six cell-reuse operations. The lactic acid yield did not fall below 90%. Temporary storage of the biomass in a refrigerator for a time interval of one to two weeks caused no significant impairment of overall lactate production, but a proportional prolongation of the lag phase occurred with increasing duration of storage.  相似文献   

12.
Fishmeal wastewater, a seafood processing waste, was utilized for production of lactic acid and fungal biomass by Rhizopus oryzae AS 3.254 with the addition of sugars. The 30 g/l exogenous glucose in fishmeal wastewater was superior to starch in view of productivities of lactic acid and fungal biomass, and COD reduction. Fishmeal wastewater can be a replacement for peptone which was the most suitable nitrogen source for lactic acid production among the tested organic or inorganic nitrogen sources. Exogenous NaCl (12 g/l) completely inhibited the production of lactic acid and fungal growth. In the medium of COD 5,000 mg/l fishmeal wastewater with the addition of 30 g/l glucose, the maximum productivity of lactic acid was 0.723 g/l h corresponding to productivity of fungal biomass 0.0925 g/l h, COD reduction 84.9% and total nitrogen removal 50.3% at a fermentation time of 30 h.  相似文献   

13.
Glycyrrhizin is an important phytoconstituent of licorice which is widely used in the pharmaceutical and food industry. As the roots and leaves of Abrus precatorius also contain glycyrrhizin, it can be used as an alternative source of glycyrrhizin. In spite of extensive research work undertaken with cultures of Glycyrrhiza glabra, the glycyrrhizin production remains elusive. Successful production of glycyrrhizin in cell cultures of A. precatorius is being reported for the first time in our study. Cell cultures of A. precatorius L. were treated with the elicitors prepared from the fungi (Aspergillus niger and Rhizopus stolonifer), yeast extract, salicylic acid, ascorbic acid, and eugenol to induce and enhance the synthesis of glycyrrhizin. In the present study, an integrated yield enhancement strategy, developed by the addition of selected elicitor (A. niger and ascorbic acid) at optimized concentrations, resulted in 24.6 g/l dry cell weight biomass and 53.62 mg/l glycyrrhizin, which was 5.22 times higher in productivity in comparison to control cultures.  相似文献   

14.
三相鼓泡塔生物反应器培养云芝菌合成漆酶   总被引:1,自引:0,他引:1  
为了提高云芝菌发酵生产漆酶的效率,提出了一种利用自絮凝菌丝球在三相鼓泡塔生物反应器中重复分批发酵产漆酶的新方法。在优化后的产酶条件下,考察维生素C的添加浓度对漆酶活力的影响,并通过在培养基中添加维生素C进行漆酶多批次培养。研究结果表明,维生素C的添加浓度为1.50mmol/L时,可使漆酶活力提高2.6倍。连续进行了10批培养,每批最大漆酶的活力均在1000 U/mL以上,最高酶活出现在第五批为1919.6 U/mL,总培养时间达25 d。此方法所得漆酶对染料靛蓝具有明显的脱色降解作用,在介体1-羟基苯并三唑(HBT)用量0.10%,漆酶用量100 U/L条件下作用40 min时,靛蓝脱色率达到96.7%。该方法采用的三相鼓泡塔生物反应器性能稳定、菌丝球可重复使用,该方法有利于漆酶的高效、规模化生产。  相似文献   

15.
Production of 2,3-butanediol by Bacillus subtilis takes place in late-log or stationary phase, depending on the expression of bdhA gene encoding acetoin reductase, which converts acetoin to 2,3-butanediol. The present work focuses on the development of a strain of B. subtilis for enhanced production of 2,3-butanediol in early log phase of growth cycle. For this, the bdhA gene was expressed under the control of P alsSD promoter of AlsSD operon for acetoin fermentation which served the substrate for 2,3-butanediol production. Addition of acetic acid in the medium induced the production of 2,3-butanediol by 2-fold. Two-step aerobic–anaerobic fermentation further enhanced 2,3-butanediol production by 4-fold in comparison to the control parental strain. Thus, addition of acetic acid and low dissolved oxygen in the medium are involved in activation of bdhA gene expression from P alsSD promoter in early log phase. Under the conditions tested in this work, the maximum production of 2,3-butanediol, 2.1 g/l from 10 g/l glucose, was obtained at 24 h. Furthermore, under the optimized microaerophilic condition, the production of 2,3-butanediol improved up to 6.1 g/l and overall productivity increased by 6.7-fold to 0.4 g/l h in the engineered strain compared to that in the parental control.  相似文献   

16.
Hydrolysate of Jerusalem artichoke was applied for the production of l-lactic acid by immobilized Lactococcus lactis cells in a fibrous bed bioreactor system. Preliminary experiments had indicated that the high quality hydrolysate, which was derived from the 40min acid treatment at 95°C and pH 1.8, was sufficient to support the cell growth and synthesis of l-lactic acid. With the addition of 5g/l yeast extract, the fermentative performance of free cell system was evidently improved. After the basal settlement of hydrolysate based fermentation, the batch mode and the fed-batch mode fermentation were carried out in the free cell system and the fibrous bed bioreactor system, respectively. In all cases the immobilized cells presented the superior ability to produce l-lactic acid. The comparison of batch mode and fed-batch mode also indicated that the growth-limiting feeding strategy could reduce the lag phase of fermentation process and enhance the production of l-lactic acid. The achieved maximum concentration of l-lactic acid was 142g/l in the fed-batch mode. Subsequent repeated-batch fermentation of the fibrous bed bioreactor system had further exhibited the persistence and stability of this system for the high production of l-lactic acid in a long term. Our work suggested the great potential of the fibrous bed bioreactor system and hydrolysate of J. artichoke in the economical production of l-lactic acid at industrial scale.  相似文献   

17.
Summary Acetic acid was produced from anaerobic fermentation of lactose by the co-culture ofStreptococcus lactis andClostridium formicoaceticum at 35° C and pHs between 7.0 and 7.6. Lactose was converted to lactic acid, and then to acetic acid in this mixed culture fermentation. The overall acetic acid yield from lactose was about 95% at pH 7.6 and 90% at pH 7.0. The fermentation rate was also higher at pH 7.6 than at pH 7.0. In batch fermentation of whey permeate containing about 5% lactose at pH 7.6, the concentration of acetic acid reached 20 g/l within 20 h. The production rate then became very slow due to end-product inhibition and high Na+ concentration. About 30 g/l acetate and 20 g/l lactate were obtained at a fermentation time of 80 h. However, when diluted whey permeate containing 2.5% lactose was used, all the whey lactose was converted to acetic acid within 30 h by this mixed culture.  相似文献   

18.
The quantitative effects of pH, temperature, time of fermentation, sugar concentration, nitrogen concentration and potassium ferrocyanide on citric acid production were investigated using a statistical experimental design. It was found that palmyra jaggery (sugar syrup from the palmyra palm) is a suitable substrate for increasing the yield of citric acid using Aspergillus niger MTCC 281 by submerged fermentation. Regression equations were used to model the fermentation in order to determine optimum fermentation conditions. Higher yields were obtained after optimizing media components and conditions of fermentation. Maximum citric acid production was obtained at pH 5.35, 29.76 °C, 5.7 days of fermentation with 221.66 g of substrate/l, 0.479 g of ammonium nitrate/l and 2.33 g of potassium ferrocyanide/l.  相似文献   

19.
The Lactobacillus brevis subsp. lindneri CB1 fructose-negative strain utilized fructose in co-fermentation with maltose or glucose. Compared to the maltose (17 g/l) fermentation, the simultaneous fermentation of maltose (10 g/l) and fructose (7 g/l) increased cell yield (A 620from 2.6 to 3.3) and the concentrations of lactic acid and especially of acetic acid (from 2.45 g/l to 3.90 g/l), produced mannitol (1.95 g/l) and caused a decrease in the amount of ethanol (from 0.46 g/l to 0.08 g/l). The utilization of fructose depended on the continuous presence of maltose in the growth medium and the two carbohydrates were consumed in a molar ratio of about 2:1. The presence of tagatose (a fructose stereoisomer) partially inhibited fructose consumption and consequently caused a decrease of the end products of the co-metabolism. Since maltose was naturally present during sourdough fermentation, the addition of only 6 g fructose/kg wheat dough enabled the co-fermentation of maltose and fructose by L. brevis subsp. lindneri CB1. A higher titratable acidity and acetic acid concentration, and a reduced quotient of fermentation (2.7) were obtained by co-fermentation compared with normal sourdough fermentation. Some interpretations of the maltose-fructose co-fermentation are given.  相似文献   

20.
Avermectin B1a batch fermentation of Streptomyces avermitilis in a 2 m3 fermentor was investigated by oxygen uptake rate (OUR) regulation during cell growth phase. OUR was controlled by adjusting of aeration and agitation. Result showed that OUR strongly affected cell growth and antibiotics production. Avermectin B1a biosynthesis could be effectively enhanced when OUR was stably regulated at an appropriate level in batch fermentation of S. avermitilis. Avermectin B1a yield reached 5568 ± 111 mg/l by controlling maximal OUR between 15 and 20 mmol/l/h during cell growth phase, which was increased by 21.8% compared with the control (maximal OUR above 20 mmol/l/h). The stimulation effect on avermectin B1a production could be attributed to the improved supply of propionic acid and acetic acid, the precursors of avermectin B1a, in the cells. Hence, this OUR control method during cell growth phase may be a simple and applicable way to improve industrial production of avermectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号