首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Uptake rates for ananonium, nitrate, urea and dinitrogen byphytoplankton in Lake Okeechobee ranged from 0.58 to 1.52 µmol1–1 h–1 among four representative stations duringa short-term study period. Ammonium accounted for 53% of theuptake rates, followed by nitrate (19%), urea (16%) and dinitrogen(12%). Half-saturation constants for nitrogen (N) uptake rangedfrom 8.70 µmol 1–1 for ammonium, 2.07 iimol 1–1for urea and 2.21 µmol 1–1 for nitrate at Southstation. This study reveals spatially varying N uptake rates,particularly N fixation, within a large eutrophic lake.  相似文献   

2.
1. Both the pelagic and benthic net dissolved inorganic carbon (DIC) productions were measured in situ on four occasions from June to September 2004, in the unproductive Lake Diktar-Erik in subarctic Sweden. The stable isotopic signal ( δ 13C) of respired organic material was estimated from hypolimnion water data and data from a laboratory incubation using epilimnion water.
2. Both pelagic and benthic habitats were net heterotrophic during the study period, with a total net DIC production of 416 mg C m−2 day−1, of which the pelagic habitat contributed approximately 85%. The net DIC production decreased with depth both in the pelagic water and in the sediments, and most of the net DIC production occurred in the upper water column.
3. Temporal variations in both pelagic and benthic DIC production were small, although we observed a significant decrease in pelagic net DIC production after the autumn turnover. Water temperature was the single most important factor explaining temporal and vertical variations in pelagic DIC production. No single factor explained more than 10% of the benthic net DIC production, which probably was regulated by several interacting factors.
4. Pelagic DIC production, and thus most of the whole-lake net production of DIC, was mainly due to the respiration of allochthonous organic carbon. Stable isotope data inferred that nearly 100% of accumulated DIC in the hypolimnion water had an allochthonous carbon source. Similarly, in the laboratory incubation using epilimnion water, c. 85% of accumulated DIC was indicated to have an allochthonous organic carbon source.  相似文献   

3.
HiMag tall fescue (Lolium arundinaceum (Schreb.) S.J. Darbyshire = Festuca arundinacea Schreb) was selected for high Mg concentration in the herbage to reduce grass tetany risk to ruminants; however, the mechanism of increased Mg uptake into shoots is unknown. The objective was to determine cation concentrations of roots, crowns, and leaves in plants of cv. HiMag and its parents, cv. Kentucky 31 and cv. Missouri 96, grown in nutrient solution for 42 days, and determine if cation ratios in roots, crowns, and leaves are different, indicating a difference due to translocation. Treatments were “basal” (1.5 mM K and 0.5 mM Mg), “K” (3.2 mM K), “Mg” (1 mM Mg), and “K?+?Mg” (3.2 mM K and 1 mM Mg). For HiMag, Mg was lower in roots (Trial 2 only), not different in crowns, and greater in leaves than Kentucky 31 and Missouri 96. Doubling the K and Mg of the nutrient solution from basal levels resulted in a 44% reduction of root Mg in Kentucky 31 and Missouri 96, compared to a 17% reduction in root Mg for HiMag. The K inflow rate in HiMag for the basal treatment was lower than that in Kentucky 31 and Missouri 96. These results provide evidence for a process that limits K uptake and an active Mg translocation mechanism in tall fescue. HiMag was apparently selected for traits that promote translocation of Mg from roots to shoots.  相似文献   

4.
New information on N uptake and transport of inorganic and organic N in arbuscular mycorrhizal fungi is reviewed here. Hyphae of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) were shown to transport N supplied as 15N-Gly to wheat plants after a 48 h labelling period in semi-hydroponic (Perlite), non-sterile, compartmentalised pot cultures. Of the 15N supplied to hyphae in pot cultures over 48 h, 0.2 and 6% was transported to plants supplied with insufficient N or sufficient N, respectively. The increased 15N uptake at the higher N supply was related to the higher hyphal length density at the higher N supply. These findings were supported by results from in vitro and monoxenic studies. Excised hyphae from four Glomus isolates (BEG 84, 107, 108 and 110) acquired N from both inorganic (15NH4 15NO3, 15NO3 or 15NH4 +) and organic (15N-Gly and 15N-Glu, except in BEG 84 where amino acid uptake was not tested) sources in vitro during short-term experiments. Confirming these studies under sterile conditions where no bacterial mineralisation of organic N occurred, monoxenic cultures of Glomus intraradices Schenk and Smith were shown to transport N from organic sources (15N-Gly and 15N-Glu) to Ri T-DNA transformed, AM-colonised carrot roots in a long-term experiment. The higher N uptake (also from organic N) by isolates from nutrient poor sites (BEG 108 and 110) compared to that from a conventional agricultural field implied that ecotypic differences occur. Although the arbuscular mycorrhizal isolates used contributed to the acquisition of N from both inorganic and organic sources by the host plants/roots used, this was not enough to increase the N nutritional status of the mycorrhizal compared to non-mycorrhizal hosts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Nitrogen stable isotopes (δ15N) of dissolved inorganic nitrogen (DIN = NH4+ and NO3), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were measured in Smith Lake, Alaska to assess their usefulness as proxies for the biological nitrogen cycling processes, nutrient concentration, and lake productivity. Large seasonal variations in δ15NH4+, δ15NO3 and δ15NPON occurred in response to different processes of nitrogen transformation that dominated a specific time period of the annual production cycle. In spring, 15N depletion in all three pools was closely related to the occurrences of a N2‐fixing cyanobacterial bloom (Anabaena flos‐aquae). In summer, δ15NPON increased as phytoplankton community shifted to use NH4+ and decreased as a brief N2‐fixing bloom (Aphanizomenon flos‐aquae) occurred in August. In early and mid‐winter, microbial nitrogen processes were dominated by nitrification that resulted in the largest isotope fractionation between NO3 and NH4+ in the annual cycle. This was followed by denitrification that led to the highest 15N enrichment in NO3. A peak of NH4+ assimilation by phytoplankton along with the elevated δ15NPON and Chl a concentration occurred just before the ice break due to increased light penetration. The δ15NDON displayed little temporal and spatial variations. This suggests that the DON pool was not altered by biological transformations of nitrogen as the results of its large size and possibly refractory nature. There was a positive correlation between Chl a concentration and δ15NPON, and a negative correlation between NH4+ and δ15NPON, suggesting that δ15NPON is a useful proxy for nitrogen productivity and ammonium concentration. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Abstract

Speciation schemes for phosphate in soils or sediments tend to yield results which are ‘conditional’ and subject to error. In the proposed modified scheme, secondary phosphate-cation interactions have been minimised by including a cation exchange resin in the extraction system; re-sorption errors have been reduced by using low (1:400) solid to liquid extractant ratios; and slow dissolution rates have been balanced by using longer extraction times (up to 62 h). Variables examined during scheme development included the effect of varying sample weights, extraction time, reagent type, exchanger type, exchanger to sample weight ratios and pH on the amount of phosphate released from a polluted lake sediment. It was found that the amount of inorganic phosphate released by chemical reagents (or by cation exchanger) varied markedly with system pH, being greatest in the pH 2 to 3 region, decreasing to near zero in the pH 4 to 6 zone, and then rising to an intermediate value at pH > 8. Monitoring of the Ca, Mg, Fe and Al released into the various solutions (or transferred into the exchanger phase) indicated that one cannot clearly distinguish between phosphate initially present in association with alkaline earth compounds or iron-rich matrix components. The advantages and limitations of this ‘differential solubility’ scheme have been considered and alternative approaches briefly reviewed.  相似文献   

7.
1. The physiological characteristics of nitrogen uptake by sublittoral and eulittoral (splash zone) epilithic periphyton as well as epipelic periphyton in N-deficient Castle Lake, California were determined by evaluating the half-saturation constants (Kt) and initial slopes (Vmax/Kt) of uptake kinetics curves. These results were compared to similar studies of phytoplankton nitrogen uptake in this lake. 2. The strategies of nitrogen uptake differed among the various communities and were largely determined by the proximity of each to pools of available dissolved inorganic N (DIN). 3. The sublittoral algae did not have a high biological affinity for either NH4 or NO3 and depended on nitrogen fixation for their N supply. The eulittoral community showed an increased capacity for DIN uptake at low substrate concentration, but not as high as measured for the phytoplankton community. Epipelic algae live immediately adjacent to a large pool of interstitial sediment NH4 and showed no physiological adaptations for surviving in a N-deficient environment. 4. Kt values for all benthic communities were approximately two orders of magnitude greater than ambient substrate levels. In contrast, the half-saturation constants for NH4+ NO3 uptake by phytoplankton were very similar to in situ levels of these nutrients.  相似文献   

8.
Time—depth variations in inorganic carbon and nitrogenuptake by phytoplankton in Toolik Lake were examined over 36h using isotope tracer techniques. Rates of dissolved inorganiccarbon (DIC = CO2 + + ) and maximum uptake were phased with the did high light/low light regime characteristic of the briefarctic summer with the amplitude of oscillation greater forDIC than for . Ammonium uptake was continuous at uptake-saturating concentrations. No conclusive evidencewas found for a diel periodicity in nitrogenous nutrient levelsor uptake of and ambient concentrations. A pronounced light—temperature effecton dissolved inorganic nitrogen (DIN = + ) uptake was evident at depth when rates of uptake were maximum. Depth-integrated daily C/N uptake ratios(mol) estimated as the mean of four consecutive 6 h incubationsranged from 1.8–6.4 under conditions of substrate saturationand from 6.0–16.1 at ambient levels of DIN. The efficacyof 24 h incubations to estimate accurately day-rates of DICand substrate-saturated DIN uptake was assessed by comparingestimates obtained from 24 h exposures to those approximatedby summing results from serial short-term incubations. Experimentsof 24 h duration accurately predicted day-rates of maximum uptake but underestimated daily DIC uptake by 13 7% ( SD). Day-length incubations introduced serious errors in the estimation of day-rates of maximum uptake, effecting an underestimation of 29 5%( SD). 1Institute of Marine Science Contribution No. 538.  相似文献   

9.
Epipelic production was studied over three years in Lake Gunillajaure, a small, subarctic lake in northern Sweden. In 1977 the lake was in its natural state and in 1978 and 1979 it was continuously fertilized with phosphorus and nitrogen. The fertilizations in 1978 and 1979 did not increase the annual epipelic production measured with 14C technique. Also the seasonal production pattern was the same during the three years. The variation in production with depth was similar all three years with mean values of 85 mg C m-2 d-1 at 2 m and 1 mg C m-2 d-1 at 11 m. Light penetration and water temperature were found to be the most important environmental factors affecting epipelic production. A long turnover time, between I months and 14 yr at different depths, of the probably well adapted epipelic community is suggested to be an explanation to the absence of a response to the fertilization.  相似文献   

10.
Uptake regions of inorganic nitrogen in roots of carob seedlings   总被引:2,自引:0,他引:2  
Three-week-old seedlings of carob ( Ceratonia siliqua L. cv. Mulata) were grown for 9 weeks under different root temperatures (20, 30 and 40°C) at pH values of 5, 7 and 9 with nitrate or ammonium as nitrogen source. Nitrogen uptake rates were determined by depletion from the medium and decreased with distance from the apex. The decline of nitrogen uptake rates along the roots depended on the form of inorganic nitrogen in the medium as well as on pH and temperature, such that the NO3 and NH+4 ions were taken up essentially by the root tips (0–2 cm) through processes requiring energy. The uncharged NH3 species entered passively, through the mature parts of the root (2–10 cm). Root zone temperature and pH affect the NH+4/NH3 equilibrium in the nutrient solution and, consequently, the uptake areas of the root for these ions. Furthermore. while root tip uptake of nitrogen is energy dependent, uptake through mature root areas is essentially passive and seems to depend on a well developed apparent free space.  相似文献   

11.
Abstract

Surface sediments drawn from 10 shallow bays have been subjected to selective extraction in order to sub-divide the total P content into sub-categories such as water soluble P, Ca-P, Al-P and Fe-P. The reagents selected were similar to systems used in soil analysis, but evaluation of the procedures showed that the species values varied with time of extraction, weight of sediment taken, volume of extradant and chemical nature of the sediment. In water extractions, the P levels appeared to be determined by saturation with a sparingly soluble salt, while in acidic media P extract levels peaked (using different experimental conditions) due to loss of extracted P as a new phase (e.g. CaHPO4) or through re-adsorption on other components.

The optimum conditions for P speciation in sediments must be determined from a series of preliminary studies because each of the five sediments studied in detail displayed individual characteristic behaviour.  相似文献   

12.
Although an increasing number of studies show that many plant species have the capacity to take up amino acids from exogenous sources, the importance of such uptake for plant nitrogen nutrition is largely unknown. Moreover, little is known regarding metabolism and distribution of amino acid-N following uptake or of the regulation of these processes in response to plant nitrogen status. Here results are presented from a study following uptake, metabolism, and distribution of nitrogen from NO(3)(-) NH(4)(+), Glu, or Ala in Scots pine (Pinus sylvestris L). In a parallel experiment, Ala uptake, processing, and shoot allocation were also monitored following a range of pretreatments intended to alter plant C- and N-status. Uptake data, metabolite profiles, N fluxes through metabolite pools and tissues, as well as alanine aminotransferase activity are presented. The results show that uptake of the organic N sources was equal to or larger than NH(4)(+) uptake, while NO(3)(-) uptake was comparatively low. Down-regulation of Ala uptake in response to pretreatments with NH(4)NO(3) or methionine sulphoximine (MSX) indicates similarities between amino acid and inorganic N uptake regulation. N derived from amino acid uptake exhibited a rapid flux through the amino acid pool following uptake. Relative shoot allocation of amino acid-N was equal to that of NH(4)(+) but smaller than for NO(3)(-) Increased N status as well as MSX treatment significantly increased relative shoot allocation of Ala-N suggesting that NH(4)(+) may have a role in the regulation of shoot allocation of amino acid-N.  相似文献   

13.
Recent studies of Lake Bonney, a meromictic Antarctic lake, utilized techniques modified for hypersaline waters and produced results significantly different from those of previous investigators. Notably higher values are reported for ammonia and nitrate, while phosphorus levels tend to be in distinct disagreement with those obtained by other workers except for limited data reported by one author using a technique similar to that used in the current studies. The method of standard additions was employed as a partial solution to salinity interferences.Correspondence: Bruce C. PARKER Biology Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061  相似文献   

14.
SUMMARY. 1. Phosphorus and nitrogen concentration in the surface sediment was analysed before, during and after fertilization of a small, stratified, subarctic lake. During stratification most (70%) of the added nutrients were deposited in the epilimnion sediment.
2. After 2 years of fertilization there was a significant increase of both nutrients at all water depths, although values were 30–50% higher per square metre in the shallow areas.
3. Nutrient budget calculations based on the sediment analyses showed that 75% of the added phosphorus and 45% of the nitrogen were accumulated in the sediment after fertilization.  相似文献   

15.
Kidby DK 《Plant physiology》1966,41(7):1139-1144
Activation by orthophosphate of a plant invertase from root nodules of Lupinus luteus L. has been demonstrated. The activation affects an increase in maximum velocity (V(max)) of the reaction. Activation was also achieved with a number of similar anions and it has been possible to infer a broad classification of anions capable of serving as activators. The possibility of orthophosphate activation in vivo has been considered, and there is some evidence to suggest that this could regulate invertase activity under physiological conditions.  相似文献   

16.
17.
18.
Environmental factors that shape dynamics of benthic toxic blooms are largely unknown. In particular, for the toxic dinoflagellate Ostreopsis cf. ovata, the importance of the availability of nutrients and the contribution of the inorganic and organic pools to growth need to be quantified in marine coastal environments. The present study aimed at characterizing N-uptake of dissolved inorganic and organic sources by O. cf. ovata cells, using the 15N-labelling technique. Experiments were conducted taking into account potential interactions between nutrient uptake systems as well as variations with the diel cycle. Uptake abilities of O. cf. ovata were parameterized for ammonium (NH4+), nitrate (NO3) and N-urea, from the estimation of kinetic and inhibition parameters. In the range of 0 to 10 μmol N L−1, kinetic curves showed a clear preference pattern following the ranking NH4+ > NO3 > N-urea, where the preferential uptake of NH4+ relative to NO3 was accentuated by an inhibitory effect of NH4+ concentration on NO3 uptake capabilities. Conversely, under high nutrient concentrations, the preference for NH4+ relative to NO3 was largely reduced, probably because of the existence of a low-affinity high capacity inducible NO3 uptake system. Ability to take up nutrients in darkness could not be defined as a competitive advantage for O. cf. ovata. Species competitiveness can also be defined from nutrient uptake kinetic parameters. A strong affinity for NH4+ was observed for O. cf. ovata cells that may partly explain the success of this toxic species during the summer season in the Bay of Villefranche-sur-mer (France).  相似文献   

19.
The Mississippi and Atchafalaya Rivers introduce large amountsof nutrients to surface waters of the northern Gulf of Mexico.This paper reports the most complete data to date on inorganicnitrogen uptake and regeneration in a broad range of coastalenvironments influenced by the river water, along with informationon nutrient concentrations and including pico-, nano-, and microplanktonspecies composition. Nitrate in surface waters is greatly reducednear the river plume, at salinities between 5 and 25 PSU, wherethe largest variance in uptake rates was observed, and was coincidentwith peaks in surface chlorophyll. Despite the depletion ofnitrate, nitrogen limitation was a rare event during the study,because of relatively high ammonium concentrations (>1 µmolNH4+ I–1 and regeneration rates. Two contrasting situationscharacterize the seasonal nitrogen dynamics in surface shelfwaters. High nitrate input during the spring caused a largebloom in which the cells were well adapted to use nitrate.Thedominant phytoplankton species were chain forming diatoms, alsoreported in sediment-trap studies in the area. Ammonium regenerationonly accounted for a small fraction of the nitrogen requirementsduring the bloom. In contrast, the low flow of river water duringsummer resulted in low nitrate concentrations in surface water.In this case phytoplankton productivity was highly reduced andmay depend greatly on ‘in sita’ ammonium regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号