首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Subway systems are indispensable for urban societies, but microbiological characteristics of subway aerosols are relatively unknown. Previous studies investigating microbial compositions in subways employed methodologies that underestimated the diversity of microbial exposure for commuters, with little focus on factors governing subway air microbiology, which may have public health implications. Here, a culture-independent approach unraveling the bacterial diversity within the urban subway network in Hong Kong is presented. Aerosol samples from multiple subway lines and outdoor locations were collected. Targeting the 16S rRNA gene V4 region, extensive taxonomic diversity was found, with the most common bacterial genera in the subway environment among those associated with skin. Overall, subway lines harbored different phylogenetic communities based on α- and β-diversity comparisons, and closer inspection suggests that each community within a line is dependent on architectural characteristics, nearby outdoor microbiomes, and connectedness with other lines. Microbial diversities and assemblages also varied depending on the day sampled, as well as the time of day, and changes in microbial communities between peak and nonpeak commuting hours were attributed largely to increases in skin-associated genera in peak samples. Microbial diversities within the subway were influenced by temperature and relative humidity, while carbon dioxide levels showed a positive correlation with abundances of commuter-associated genera. This Hong Kong data set and communities from previous studies conducted in the United States formed distinct community clusters, indicating that additional work is required to unravel the mechanisms that shape subway microbiomes around the globe.  相似文献   

2.
3.
Herbicides are one of the most widely used chemicals in agriculture. While they are known to be harmful to nontarget organisms, the effects of herbicides on the composition and functioning of soil microbial communities remain unclear. Here we show that application of three widely used herbicides—glyphosate, glufosinate, and dicamba—increase the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in soil microbiomes without clear changes in the abundance, diversity and composition of bacterial communities. Mechanistically, these results could be explained by a positive selection for more tolerant genotypes that acquired several mutations in previously well-characterized herbicide and ARGs. Moreover, herbicide exposure increased cell membrane permeability and conjugation frequency of multidrug resistance plasmids, promoting ARG movement between bacteria. A similar pattern was found in agricultural soils across 11 provinces in China, where herbicide application, and the levels of glyphosate residues in soils, were associated with increased ARG and MGE abundances relative to herbicide-free control sites. Together, our results show that herbicide application can enrich ARGs and MGEs by changing the genetic composition of soil microbiomes, potentially contributing to the global antimicrobial resistance problem in agricultural environments.  相似文献   

4.
Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity–ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low‐diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems.  相似文献   

5.
While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.Subject terms: Soil microbiology, Microbial ecology  相似文献   

6.
The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef‐building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.Subject terms: Microbial ecology, Microbial ecology  相似文献   

7.
In the past decade, studies on the mammalian gut microbiome have revealed that different animal species have distinct gut microbial compositions. The functional ramifications of this variation in microbial composition remain unclear: do these taxonomic differences indicate microbial adaptations to host-specific functionality, or are these diverse microbial communities essentially functionally redundant, as has been indicated by previous metagenomics studies? Here, we examine the metabolic content of mammalian gut microbiomes as a direct window into ecosystem function, using an untargeted metabolomics platform to analyze 101 fecal samples from a range of 25 exotic mammalian species in collaboration with a zoological center. We find that mammalian metabolomes are chemically diverse and strongly linked to microbiome composition, and that metabolome composition is further correlated to the phylogeny of the mammalian host. Specific metabolites enriched in different animal species included modified and degraded host and dietary compounds such as bile acids and triterpenoids, as well as fermentation products such as lactate and short-chain fatty acids. Our results suggest that differences in microbial taxonomic composition are indeed translated to host-specific metabolism, indicating that taxonomically distant microbiomes are more functionally diverse than redundant.Subject terms: Metabolomics, Microbiome, Microbial ecology  相似文献   

8.
Protozoan predators form an essential component of activated sludge communities that is tightly linked to wastewater treatment efficiency. Nonetheless, very little is known how protozoan predation is channelled via bacterial communities to affect ecosystem functioning. Therefore, we experimentally manipulated protozoan predation pressure in activated-sludge communities to determine its impacts on microbial diversity, composition and putative functionality. Different components of bacterial diversity such as taxa richness, evenness, genetic diversity and beta diversity all responded strongly and positively to high protozoan predation pressure. These responses were non-linear and levelled off at higher levels of predation pressure, supporting predictions of hump-shaped relationships between predation pressure and prey diversity. In contrast to predation intensity, the impact of predator diversity had both positive (taxa richness) and negative (evenness and phylogenetic distinctiveness) effects on bacterial diversity. Furthermore, predation shaped the structure of bacterial communities. Reduction in top-down control negatively affected the majority of taxa that are generally associated with increased treatment efficiency, compromising particularly the potential for nitrogen removal. Consequently, our findings highlight responses of bacterial diversity and community composition as two distinct mechanisms linking protozoan predation with ecosystem functioning in activated sludge communities.Subject terms: Microbial communities, Biodiversity  相似文献   

9.
The Moorea Coral Reef Long Term Ecological Research (LTER) Site (17.50°S, 149.83°W) comprises the fringe of coral reefs and lagoons surrounding the volcanic island of Moorea in the Society Islands of French Polynesia. As part of our Microbial Inventory Research Across Diverse Aquatic LTERS biodiversity inventory project, we characterized microbial community composition across all three domains of life using amplicon pyrosequencing of the V6 (bacterial and archaeal) and V9 (eukaryotic) hypervariable regions of small-subunit ribosomal RNA genes. Our survey spanned eight locations along a 130-km transect from the reef lagoon to the open ocean to examine changes in communities along inshore to offshore gradients. Our results illustrate consistent community differentiation between inshore and offshore ecosystems across all three domains, with greater richness in all domains in the reef-associated habitats. Bacterial communities were more homogenous among open ocean sites spanning >100 km than among inshore sites separated by <1 km, whereas eukaryotic communities varied more offshore than inshore, and archaea showed more equal levels of dissimilarity among subhabitats. We identified signature communities representative of specific geographic and geochemical milieu, and characterized co-occurrence patterns of specific microbial taxa within the inshore ecosystem including several bacterial groups that persist in geographical niches across time. Bacterial and archaeal communities were dominated by few abundant taxa but spatial patterning was consistent through time and space in both rare and abundant communities. This is the first in-depth inventory analysis of biogeographic variation of all three microbial domains within a coral reef ecosystem.  相似文献   

10.
Trade‐offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes.  相似文献   

11.
Loss in microbial diversity affects nitrogen cycling in soil   总被引:3,自引:0,他引:3  
Microbial communities have a central role in ecosystem processes by driving the Earth''s biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/103 and 1/105 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated.  相似文献   

12.
Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community—either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied. To assess the role of protozoa on the rumen ecosystem, we established an in-vitro system in which distinct protozoa sub-communities were introduced to the native rumen prokaryotic community. We show that the different protozoa communities exert a strong and differential impact on the composition of the prokaryotic community, as well as its function including methane production. Furthermore, the presence of protozoa increases prokaryotic diversity with a differential effect on specific bacterial populations such as Gammaproteobacteria, Prevotella and Treponema. Our results suggest that protozoa contribute to the maintenance of prokaryotic diversity in the rumen possibly by mitigating the effect of competitive exclusion between bacterial taxa. Our findings put forward the rumen protozoa populations as potentially important ecosystem engineers for future microbiome modulation strategies.Subject terms: Microbial ecology, Food webs  相似文献   

13.
14.
Growing evidence suggests that microbiomes have been shaping the evolutionary pathways of macroorganisms for millennia and that these tiny symbionts can influence, and possibly even control, species interactions like host–parasite relationships. Yet, while studies have investigated host–parasites and microbiomes separately, little has been done to understand all three groups synergistically. Here, we collected infected and uninfected Eurypanopeus depressus crab hosts from a coastal North Carolina oyster reef three times over 4 months. Infected crabs demonstrated an external stage of the rhizocephalan parasite, Loxothylacus panopaei. Community analyses revealed that microbial richness and diversity were significantly different among tissue types (uninfected crab, infected crab, parasite externae and parasite larvae) and over time (summer and fall). Specifically, the microbial communities from parasite externae and larvae had similar microbiomes that were consistent through time. Infected crabs demonstrated microbial communities spanning those of their host and parasite, while uninfected crabs showed more distinctive communities with greater variability over time. Microbial communities were also found to be indicators of early-stage infections. Resolving the microbial community composition of a host and its parasite is an important step in understanding the microbiome's role in the host–parasite relationship and determining how this tripartite relationship impacts coevolutionary processes.  相似文献   

15.
人类活动导致黄土高原土地退化和生物多样性丧失,进而降低了生态系统功能。人工造林是该区域退化土地恢复的重要措施。现有的生态修复研究通常侧重于微生物群落物种多样性的恢复对单一生态系统功能的影响,而忽略了微生物间存在的相互作用与生态系统多功能性(Ecosystem multifunctionality, EMF)的关系。为探究造林恢复过程中土壤微生物多样性和网络复杂性与EMF的关系,本研究采用时空代换法(space-time substitution method),沿50年造林恢复时间序列,分析了黄土高原地区造林恢复对土壤微生物群落多样性、土壤微生物网络复杂性以及与土壤养分循环相关的10个生态系统功能指标的影响,明确了土壤微生物群落特征与EMF的关系。结果表明,随造林恢复时间序列的增加,土壤微生物群落的综合多样性、网络复杂性和EMF均呈现出显著增加后下降的趋势(P<0.05),其中土壤微生物综合多样性和网络复杂性在第8年达到最高值,EMF在第20年达到最大值。在未控制土壤环境因素时,细菌和古菌多样性与EMF无显著相关性,真菌多样性与EMF呈显著正相关(P<0.001);土壤微生...  相似文献   

16.
Microbial homeostasis—constant microbial element ratios along resource gradients—is a core ecological tenet, yet not all systems display homeostasis. We suggest investigations of homeostasis mechanisms must also consider plant–microbial interactions. Specifically, we hypothesized that ecosystems with strong plant community plasticity to changing resources will have homeostatic microbial communities, with less microbial resource cost, because plants reduce variance in resource stoichiometry. Using long‐term nutrient additions in two ecosystems with differing plant response, we fail to support our hypothesis because although homeostasis appears stronger in the system with stronger plant response, microbial mechanisms were also stronger. However, our conclusions were undermined by high heterogeneity in resources, which may be common in ecosystem‐level studies, and methodological assumptions may be exacerbated by shifting plant communities. We propose our study as a starting point for further ecosystem‐scale investigations, with higher replication to address microbial and soil variability, and improved insight into microbial assimilable resources.  相似文献   

17.
Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a ‘melting pot'' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype–environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both.  相似文献   

18.
The biological diversity and composition of microorganisms influences both human health outcomes and ecological processes; therefore, understanding the factors that influence microbial biodiversity is key to creating healthy, functional landscapes in which to live. In general, biological diversity is predicted to be limited by habitat size, which for green areas is often reduced in cities, and by chronic disturbance (stress). These hypotheses have not previously been tested in microbial systems in direct comparison to macroorganisms. Here we analyzed bacterial, fungal and ant communities in small road medians (average area 0.0008 km2) and larger parks (average area 0.64 km2) across Manhattan (NYC). Bacterial species richness was not significantly different between medians and parks, but community composition was significantly distinct. In contrast, ant communities differed both in composition and richness with fewer ant species in medians than parks. Fungi showed no significant variation in composition or richness but had few shared taxa between habitats or sites. The diversity and composition of microbes appears less sensitive to habitat patchiness or urban stress than those of macroorganisms. Microbes and their associated ecosystem services and functions may be more resilient to the negative effects of urbanization than has been previously appreciated.  相似文献   

19.
Species diversity and the structure of microbial communities in soils are thought to be a function of the cumulative selective pressures within the local environment. Shifts in microbial community structure, as a result of metal stress, may have lasting negative effects on soil ecosystem dynamics if critical microbial community functions are compromised. Three soils in the vicinity of a copper smelter, previously contaminated with background, low and high levels of aerially deposited metals, were amended with metal-salts to determine the potential for metal contamination to shape the structural and functional diversity of microbial communities in soils. We hypothesized that the microbial communities native to the three soils would initially be unique to each site, but would converge on a microbial community with similar structure and function, as a result of metal stress. Initially, the three different sites supported microbial communities with unique structural and functional diversity, and the nonimpacted site supported inherently higher levels of microbial activity and biomass, relative to the metal-contaminated sites. Amendment of the soils with metal-salts resulted in a decrease in microbial activity and biomass, as well as shifts in microbial community structure and function at each site. Soil microbial communities from each site were also observed to be sensitive to changes in soil pH as a result of metal-salt amendment; however, the magnitude of these pH-associated effects varied between soils. Microbial communities from each site did not converge on a structurally or functionally similar community following metal-salt amendment, indicating that other factors may be equally important in shaping microbial communities in soils. Among these factors, soil physiochemical parameters like organic matter and soil pH, which can both influence the bioavailability and toxicity of metals in soils, may be critical.  相似文献   

20.
土壤微生物多样性研究是整个生态系统研究中最薄弱的环节之一。高通量测序技术和生物信息学方法的快速发展极大地促进了土壤微生物多样性监测研究的深度和广度。目前世界范围内已经开展了一些综合的微生物多样性研究计划, 如地球微生物计划。这些计划存在的主要问题是缺少动态的监测、研究方法不统一、数据整合困难等。中国土壤微生物多样性监测网(Soil Microbial Observation Network, SMON)是中国生物多样性监测与研究网络(Chinese Biodiversity Monitoring and Research Network, Sino BON)的重要组成部分, 本文中我们对该监测网的建设提出了一些思考。在监测布局上建议选择我国南北水热梯度下的森林生态系统、东西降雨梯度下的草原生态系统、典型湿地生态系统及重要农田生态系统, 同时依托现已建成的生物多样性监测网络观测点或大样地, 布设监测样点, 利用现代环境基因组学和生物信息学技术, 重点围绕土壤微生物群落和功能基因组的组成与多样性, 开展长期定点的动态监测。监测的结果将以名录、数据集或图鉴的形式发布, 包括中国典型生态系统中土壤细菌、古菌、真菌与地衣、土壤宏基因组和重要功能基因的组成和多样性等数据, 同时建设土壤生物大数据平台, 达到监测数据的储存、查询、分析、下载、成图的功能。通过土壤微生物多样性监测, 将阐明我国重要森林、草地、湿地、农田生态系统中土壤微生物组成、多样性、功能基因的时空变化特征和驱动机制, 建立土壤微生物多样性变化与生态系统功能的关系及相关的模型, 预测全球环境条件变化下土壤微生物的演变规律, 为土壤微生物多样性资源的保护和利用提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号