首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sophora arizonica, Sophora gypsophila, Sophora secundiflora, Sophora affinis, and Sophora japonica were recently reclassified as Dermatophyllum arizonicum, Dermatophyllum gypsophilum, Dermatophyllum secundiflorum, Styphnolobium affine, and Styphnolobium japonicum, respectively. Some legumes of the sub family Papilionoideae including Sophora species are reported to contain a variety of quinolizidine alkaloids. The quinolizidine alkaloid profiles of D. arizonicum, D. gypsophilum, D. secundiflorum, S. affine, and S. japonicum were investigated qualitatively and quantitatively using field collections and herbarium specimens throughout their range of geographical distribution for the native species. This is the first report of the alkaloid profiles of D. arizonicum and D. gypsophilum. Alkaloid profiles of the other species were compared to previous reports. The Dermatophyllum species contain quinolizidine alkaloids, and the teratogen anagyrine (11), while the Styphnolobium species do not contain quinolizidine alkaloids. The chemotaxonomic data are consistent with the reclassification of each species.  相似文献   

2.
The phylogenetic position of Sophora inhambensis (one of only three species of Sophora that occur in Africa — the others are the widespread S. tomentosa and S. velutina) is inferred from an analysis of internal transcribed spacer (ITS) sequences for the core genistoid legumes. This species was thought to be closely related to the Podalyrieae based on chemical data (alkaloids and seed flavonoids), but molecular data indicates that it is strongly supported within the genus Sophora, close to the type species, S. tomentosa. Sophora velutina also groups with Sophora sensu stricto.  相似文献   

3.
In a three-hour bioassay, we tested the palatability and feeding preferences of Uresiphita maorialis (kōwhai moth) for Sophora tetraptera, Sophora microphylla and Sophora prostrata. Palatability tests showed no differences among the Sophora species. Feeding preferences, on the other hand, showed that S. tetraptera and S. microphylla leaves are preferred over S. prostrata leaves. Our results support our field observations in Wellington city parks and gardens showing that S. tetraptera and S. microphylla plants frequently have higher densities of larvae than S. prostrata.  相似文献   

4.
Five new quinolizidine alkaloids, including three sparteine‐type alkaloids ( 1  –  3 ) and two cytisine‐type alkaloids ( 4 and 5 ), along with four known ones, were isolated from the roots of Sophora flavescens. Their structures were determined by extensive spectroscopic techniques including IR, UV, NMR, and HR‐ESI‐MS. All the compounds were evaluated for their antibacterial activities against Staphylococcus aureus and Escherichia coli.  相似文献   

5.
Two lectins, Leaf Lectin I and Leaf Lectin II (LLI and LLII) were purified from the leaves of Sophora japonica. Like the Sophora seed lectin, LLI and LLII are tetrameric glycoproteins containing a single subunit with respect to size. The subunits of LLI (32 kilodaltons) and LLII (34 kilodaltons) are slightly larger than those of the seed lectin (29.5 kilodaltons). The three Sophora lectins display indistinguishable specificities, amino acid compositions, specific hemagglutinin activities, and extinction coefficients. Although very closely related to the seed lectin, the leaf and seed lectins are not immunologically identical and they differ in subunit molecular weights, carbohydrate content, and in the pH sensitivity of their hemagglutinin activities. N-terminal amino acid sequence analysis shows that although they are homologous proteins, the three Sophora lectins are products of distinct genes.  相似文献   

6.
Two new cage-type lupin alkaloids, (?)-tsukushinamine-B and tsukushinamine-C, have been isolated from the fresh epigeal parts of Sophora franchetiana, along with (?)-cytisine, (?)-N-formylcytisine, (?)-rhombifoline, (?)-anagyrine, (?)-baptifoline and (±)-ammodendrine, as well as (?)-tsukushinamine-A. The structures of these novel tsukushinamine-type lupin alkaloids were determined by spectroscopic data and partly by a chemical reaction. Variations of the alkaloid contents in the seeds, seedlings and various parts of S. franchetiana were also examined.  相似文献   

7.
The major alkaloids of Sophora mollis are (+)-sparteine and (?)-cytisine, and the minor ones are also of the sparteine-type (lupanine and 5,6-deh  相似文献   

8.
Floral ontogeny is described in eight species of Sophora sensu lato, representing the Sophora group, as part of a comparative ontogenetic analysis of Polhill's eight groups of tribe Sophoreae, subfamily Papilionoideae. This tribe includes taxa having relatively unspecialized floral structure. Flowers have a five-lobed calyx, a corolla of five free petals, ten mostly unfused, identical stamens, and a carpel. Order of initiation is predominantly acropetal (except for the carpel): sepals, petals, outer stamens plus carpel, inner stamens. Order of initiation within each whorl is unidirectional from the abaxial side. Overlapping initiation among whorls occurs only in S. chrysophylla. Keel petals are slightly fused in six species, and wing petals are fused in 5. tomentosa. Two bird-pollinated species (S. chrysophylla, S. microphylla) lack the papilionaceous corolla of other species, and their petals are unusually long and lack wing sculpturing found in the others. Other floral differences among species mostly involve flower color, differing absolute or relative sizes among organs, and degree of reflexing of vexillum. All but S. davidii have a hypanthium, which develops very late, starting when the bud is about 5 mm long. The distinctions among species (petal size, degree of reflexed position of vexillum, petal sculpturing, color, anther shape, filament hairs, hypanthium presence, calyx lobing) tend to be expressed late in ontogeny.  相似文献   

9.
The binding-site specificities of lectins isolated from the seeds of Baihinia purpurea alba, Sophora japonica, and Wistaria floribunda were studied by hemagglutination-inhibition assays utilizing a variety of saccharides as inhibitors. For Bauhinia lectin, 2-acetamido-2-deoxy-d-galactose was found to be the best monosaccharide inhibitor and the free monosaccharide inhibitor was as active as its glycosides. d-Galactose was a weak inhibitor and so were some of its glycosides. Some of the oligosaccharides having a d-galactose nonreducing terminus were good inhibitors, but substitution on the d-galactose or 2-acetamido-2-deoxy-d-galactose residues with other saccharides abolished the inhibitory activity. No specificity for anomeric configuration or linkage position could be demonstrated. The presence of aromatic aglycon groups did not enhance inhibitory activity of the saccharides tested and, in some cases, the inhibitory activity was decreased. In contrast to the results for the Bauhinia lectin, compounds having aromatic aglycon groups were markedly better inhibitors for Sophora and Wistaria lectins than the corresponding compounds without aromatic aglycons. d-Galactose was a weak inhibitor for Sophora and Wistaria lectins, whereas 2-acetamido-d-galactose was a poor inhibitor of Sophora lectin but a good inhibitor of Wistaria lectin. Sophora and Wistaria lectins were somewhat similar in their activity as some of the saccharides having a d-galactose in penultimate position to an l-fucose residue were weak inhibitors. However, Sophora lectin has a binding preference for β anomers, whereas Wistaria lectin did not demonstrate a clear preference for α or β anomers. For some pairs of compounds, the α was a better inhibitor than, the β anomer; in other cases, the reverse was true.  相似文献   

10.
Fruits of Cyclolobium brasiliense Benth. (Leguminosae; Papilionoideae) were found to contain quinolizidine alkaloids. Several tetracyclic sparteine-type alkaloids, the bipiperidyl alkaloid ammodendrine and the α-pyridone alkaloid N-methylcytisine were identified. The presence of quinolizidine alkaloids in this monotypic genus supports a relationship with tribe Brongniartieae and genistoid tribes rather than its current placement in tribe Millettieae.  相似文献   

11.
Sophora microphylla, S. prostrata and S. tetraptera are distinguishable from one another by their leaf flavonoids. S. microphylla is distinguished by the present of rhamnosylvitexin and rhamnosylisovitexin and S. tetraptera by the presence of apigenin-7-O-rhamnosylglucoside-4′-O-glucoside and the 7-O-glucosides of apigenin, 7,4′-dihydroxyflavone, luteolin and 7,3′,4′-trihydroxyflavone. Sophora prostrata lacks all these flavonoids, but has several pigments which are common to all three species.  相似文献   

12.
A simple, rapid and reliable high-performance capillary electrophoresis method has been developed to determine quantitatively the alkaloid content of Sophora tonkinensis, a Chinese herb commonly known as shan-dou-gen. A total of seven quinolizidine alkaloids (cytisine, sophocarpine, matrine, lehmannine, sophoranol, oxymatrine and oxysophocarpine) could be readily separated within 15 min. The running buffer was 50 mM phosphate buffer (pH 2.5) containing 1% hydroxypropyl-beta-cyclodextrin and 3.3% isopropanol in water. The applied voltage was 25 kV, the capillary temperature was 25 degrees C, the detection wavelength was 200 nm and scopolamine butylbromide was used as internal standard. The method was used to analyse the chemical constituents of two commercial alternatives to shan-dou-gen. The alkaloid constituents of authentic shan-dou-gen gave a specific HPCE electropherogram that could be used to distinguish the drug from potential substitutes. Furthermore, the content of oxymatrine and the total content of the seven quinolizidine alkaloids could be used as quantitative markers in order to assess the quality of S. tonkinensis.  相似文献   

13.
《Phytochemistry》1987,26(9):2477-2480
High levels of 4-methyleneglutamine accumulate in the roots and leaves of Sophora japonica, but no detectable amounts of 4-methyleneglutamic acid and only trace quantities of 2-oxo-4-methyleneglutaric acid are seen. 4-Methylglutamic acid, however, is present in leaves and roots at a level 5–25% of that found for 4-methyleneglutamine; 2-oxo-4-methylglutaric acid is the most abundant keto acid detected in 28-day leaf extracts, but no 4-methylglutamine is seen. Transamination by pig heart glutamate: oxalacetate aminotransferase of the 2-oxo-4-methylglutaric acid that occurs in this species yields erythro-4-methylglutamic acid; the 2-oxo acid, therefore, has the (4R) configuration. The 4-methylglutamic acid isolated from this plant is also the erythro isomer and is probably of the (2S, 4R) configuration. This is the first report of the presence of 4-substituted glutamic acids in Sophora and the first instance where high levels of 4-methyleneglutamine are present in the absence of detectable levels of 4-methyleneglutamic acid.  相似文献   

14.
Cytisine and matrine alkaloids detected in Sophora species have been used to classify the genus chemotaxonomically.  相似文献   

15.
Administration of matrine-U-3H and sophocarpine-U-3H to Sophora alopecuroides seedlings shows that these compounds were incorporated into quinolizidine alkaloids such as matrine, sophacarpine, and their N-oxides, but not into sophoridine. It is suggested that there is no stereochemical conversion of alkaloids of matrine configuration into sophoridine by the plant. The incorporation of cadaverine-1,5-14C was so low that it cannot be regarded with certainty as a physiological precursor of the alkaloids. The N-oxides of matrine and sophocarpine were isolated and identified by their chromatographic and chemical properties.  相似文献   

16.
Iridoid and alkaloid analyses were conducted on Castilleja sulphurea, C. occidentalis, C. rhexifolia and C. hispida (Scrophulariaceae). Pyrrolizidine alkaloids were found in C. rhexifolia and some C. sulphurea populations, but other C. sulphurea populations had quinolizidine alkaloids or none at all. No C. occidentalis populations contained alkaloids. C. hispida was found to contain lamprolobine and the quinolizidine alkaloid anagyrine. All taxa contained the pyridinemonoterpene rhexifoline. The iridoid content of the Castilleja species were all qualitatively similar. Major iridoids were aucubin, catalpol, penstemonoside and shanzhiside methyl ester, with traces of 8-epiloganin and gardoside methyl ester. Larvae of Platyptilia pica (Pterophoridae) hosted by Castilleja were found to excrete and not sequester iridoids. The adult moths contained rhexifoline alkaloid, but at a low concentration level. Systematic implications of the results for Castilleja are discussed.  相似文献   

17.
Five N-acetyl-galactosamine-specific lectins were isolated from the bark of the legume tree Sophora japonica. These lectins are immunologically and structurally very similar, but not identical, to the Sophora seed and leaf lectins. The carbohydrate specificities and hemagglutinin activities of these lectins are indistinguishable at pH 8.5 but their activities differ markedly at pH values below 8. All five lectins are tetrameric glycoproteins made up of different combinations of subunits of about 30,000, 30,100, 33,000 Mr containing 3% to 5% covalently attached sugar. These lectins are the overwhelmingly dominant proteins in bark, but they do not appear to be present in other tissues. Amino terminal sequence analysis indicates that at least two distinct lectin genes are expressed in bark.  相似文献   

18.
Sophora tomentosa , the type species of the genus Sophora , is shown by phylogenetic analyses of rbc L and ITS sequence data to be sister to Sophora sect. Edwardsia . S. tomentosa and most of the species from sect. Edwardsia share hypogeal germination, exstipulate leaves, and terete filaments. These species have buoyant seeds, and are distributed by ocean currents throughout the pantropics ( S. tomentosa ) and around southern temperate oceanic islands (sect. Edwardsia ). S. tomentosa differs from the species of sect. Edwardsia by its frutescent growth habit, terminal elongate inflorescence and smooth-walled legume. S. macrocarpa is unusual in sect. Edwardsia as its leaves have stipules, the filaments are winged, and the legume is smooth-walled.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 439–446.  相似文献   

19.
(+)-12alpha-Hydroxysophocarpine (8), a new quinolizidine alkaloid was isolated from the roots of Sophora flavescens, together with 10 known quinolizidine alkaloids, (+)-oxymatrine (1), (+)-matrine (2), (+)-9alpha-hydroxymatrine (3), (+)-allomatrine (4), (+)-oxysophocarpine (5), (-)-sophocarpine (6), (-)-9alpha-hydroxysophocarpine (7), (+)-lehmannine (9), (-)-13,14-dehydrosophoridine (10), and (-)-anagyrine (11). Their structures were elucidated by spectroscopic methods, and the stereochemistry of 8 was confirmed by X-ray analysis. These alkaloids were tested for anti-hepatitis B virus (HBV) activity in vitro, compounds 5, 6, 9, and 10 showed significant anti-HBV activity with inhibitory potency against HBsAg secretion at 48.3-79.3% and that against HBeAg secretion at 24.6-34.6%.  相似文献   

20.
《Mycoscience》2014,55(4):252-259
Cytospora species are the most serious and widespread pathogens associated with canker disease on multiple plants. In this study, three species, i.e., Cytospora sophoricola, C. chrysosperma, and C. sophorae, which were isolated from Sophora in China, are described and illustrated based on their morphological characteristics and phylogenetic analyses. Cytospora sophoricola was distinguished clearly by its larger disc, multiple ostioles, cystic and multiple locules, and specific cultural characteristics, i.e., protruding fruiting bodies. Maximum parsimony and maximum likelihood analysis showed that it did not cluster with any known species of Cytospora, so it is described as a new species. Cytospora sophorae is a previously reported species from Sophora, which is redescribed based on new isolates and additional observations. Another species was identified as C. chrysosperma, which is reported for the first time on Sophora, so Papilionaceae is shown to be a new host family for C. chrysosperma. The morphological affinities of these species with related taxa are discussed, while the phylogenetic relationships of these species with other fungus in the genus Cytospora were elucidated based on their internal transcribed spacer (ITS) rRNA region sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号