首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new compounds, piperoside (1) and isoheptanol 2(S)-O-β-d-xylopyranosyl (1→6)-O-β-d-glucopyranoside (11), along with 10 known compounds 3,4-dihydroxyallylbenzene (2), 1,2-di-O-β-d-glucopyranosyl-4-allylbenzene (3), tachioside (4), benzyl-O-β-d-glucopyranoside (5), icariside F2 (6), dihydrovomifoliol-3′-O-β-d-glucopyranoside (7), isopropyl O-β-d-glucopyranoside (8), isopropyl primeveroside (9), n-butyl O-β-d-glucopyranoside (10), isoheptanol 2(S)-O-β-d-apiofuranosyl-(1→6)-O-β-d-glucopyranoside (12), were isolated from the leaves of Piper retrofractum. Their structures were determined from 1D-NMR, 2D-NMR, and HR-ESI-MS spectral, a modified Mosher’s method, and comparisons with previous reports. All of the isolated compounds showed modest α-glucosidase inhibitory (4.60 ± 1.74% to 11.97 ± 3.30%) and antioxidant activities under the tested conditions.  相似文献   

2.
Two new metabolites, identified as 6-phenylbenzofuran-4-ol, named olerabenzofuran (1), and 2-(furan-2-yl)− 6-hydroxy-1 H-inden-1-one, named oleraindenone (2), together with eight furan compounds obtained for the first time, (+)-pinoresinol (3), (-)-syringaresinol (4), (+)-diasyringaresinol (5), (+)-episyringaresinol (6), (2 S)− 1-[2-(furan-2-yl)− 2-oxoethyl]− 5-oxopyrrolidine-2-carboxylic acid (7), methyl (2 S)− 1[2-(furan-2-yl)− 2-oxoethyl]− 5-oxopyrrolidine-2-carboxylate (8), drynaran (9), and 2-furoic acid (10), were isolated from Portulaca oleracea L., and spectroscopic methods, including 1D and 2D NMR and UHPLC-ESI-QTOF/MS spectrometry techniques, were employed to determine their structures. It was suggested that both olerabenzofuran (1) and oleraindenone (2) could significantly inhibit inflammatory factor interleukin-1β (IL-1β) in RAW 264.7 cells induced by LPS.  相似文献   

3.
Six new compounds including two oleanane-type triterpenoid saponins (1, 2) and four C-glycosyl flavones (36), along with a known saponin (7), three di-C-glycosyl flavones (810) and a glycosyl auronol (11), were isolated from the stem bark of Erythrina abyssinica Lam. The structures of the new compounds, identified as 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-galactopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (1), 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (2), 6-C-β-glucopyranosyl-8-C-β-quinovopyranosyl apigenin (3), 6-C-β-quinovopyranosyl-8-C-β-glucopyranosyl apigenin (4), 8-C-[6″-O-α-l-rhamnopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (5) and 8-C-[6″-O-β-d-xylopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (6), were determined by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and acid hydrolysis. These new compounds together with the known saponins 7 were evaluated for their cytotoxic activity against MCF-7 (estrogen dependent) and MDA-MB-231 (estrogen independent) cell lines. The new saponin 2 exhibited the highest cytotoxic activity among tested compounds, exerting a selective inhibitory effect against the proliferation of MCF-7 cells, with lower IC50 value (12.90 μM) than that of the positive control, resveratrol (13.91 μM). Structure–activity relationship of these compounds is also discussed.  相似文献   

4.
Chevalierinosides B (1) and C (2), two new isoflavonoid glycosides, characterized as biochanin A 7-O-[β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside] and genistein 7-O-[β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside], together with the known isoflavonoids, chevalierinoside A (3) and genistein 7-O-β-d-glucopyranoside (4), kaempferol 3-O-β-d-glucopyranoside (5) and triterpenes, friedelin (6), betulinic acid (7), 30-oxobetulinic acid (8), 30-hydroxybetulinic acid (9), were isolated from the stem bark of Antidesma laciniatum Muell. Arg. (syn. Antidesma chevalieri Beille). Their structures were established by direct interpretation of their spectral data, mainly HR-TOFESIMS, 1D-NMR (1H, 13C and DEPT) and 2D-NMR (COSY, NOESY, TOCSY, HSQC and HMBC), and by comparison with the literature.  相似文献   

5.
Phytochemical investigation of 70% aqueous EtOH extract of Cistanche sinensis led to the isolation of fifteen compounds (115), including nine phenylethanoid glycosides (PhGs, 19), five iridoid glycosides (1014), and one lignan glycoside (15). Their structures were determined on the basis of 1D- and 2D-NMR experiments and by comparison with physical data of known compounds. Among the isolated compounds, 1 was identified as a new compound, three compounds (9, 14, and 15) were firstly reported from the genus Cistanche, and seven compounds (26, 11, and 12) were isolated from C. sinensis for the first time. PhGs with a 6′-O-rhamnosyl moiety such as cistansinenside B (1), poliumoside (7), and 2′-O-acetylpoliumoside (9) could serve as chemotaxonomic markers to differentiate C. sinensis from other species of Cistanche.  相似文献   

6.
A new furan-2-carbonyl C-(6′-O-galloyl)-β-glucopyranoside (scleropentaside F, 1) and a new alkyl glucoside [butane-2,3-diol 2-(6′-O-galloyl)-O-β-glucopyranoside, 2] were isolated from the entire hemi-parasitic plant, Dendrophthoe pentandra growing on Tectona grandis together with ten known compounds including, benzyl-O-β-d-glucopyranoside (3), benzyl-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (4), benzyl-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (5), methyl gallate 3-O-β-d-glucopyranoside (6), methyl gallate 3-O-(6′-O-galloyl)-β-d-glucopyranoside (7), (+)-catechin (8), procyanidin B-1 (9) and procyanidin B-3 (10), bridelionoside A (11), and kiwiionoside (12). In addition, compounds 1, 39 were isolated from this species growing on the different host, Mangifera indica. The structure elucidations were based on physical data and spectroscopic evidence including 1D and 2D experiments.  相似文献   

7.
Three new monoterpene glycosides, sibiraglycoside L (1), M (2), N (3) and one new sorbitol ester, resibirate (4), together with four known compounds including caffeic acid glucitol ester (5), sibiscolacton C (6), geraniol-1-O-[α-l-rhamnopyranosyl-(1  6)-1-β-d-glucopyranoside] (7), and sibiraglycoside K (8), respectively, were isolated from an aqueous extract of the aerial portion of Sibiraea angustata. Their structures were elucidated on the basis of extensive spectroscopic data analysis (including 13CNMR,1HNMR, HSQC, HMBC,1H-1H COSY, ROESY, HRESIMS, MS and CD experiments) and comparison to previously reported data. In addition, a preliminary evaluation of the hypolipidemic activities of these compounds is presented, some compounds showed moderate hypolipidemic activities in HepG2 cells.  相似文献   

8.
Three new phenylethanoid glycosides, 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside A, 1), 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-glucopyranosyl-(1  4)-β-d-allopyranoside (hodgsonialloside B, 2) and 2-(3-methoxy-4-hydroxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside C, 3) were isolated from the leaves of Magnolia hodgsonii in addition to six known compounds, tyrosol 4-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside (4), kaempferol 3-O-neohesperidoside (5), kaempferol 3-O-rutinoside (6), kaempferol 3-O-α-l-rhamnopyranosyl-(1  2)-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (7), (+)-syringaresinol O-β-d-glucopyranoside (8), and oblongionoside C (9). The structure elucidation of these compounds was based on analyses of physical and spectroscopic data including 1D and 2D NMR experiments.  相似文献   

9.
Chemical investigation of Chrozophora tinctoria (L.) A. Juss. growing in Saudi Arabia revealed the isolation of two new acylated flavonoids identified as acacetin-7-O-β-d-[α-l-rhamnosyl(1  6)]3″-E-p-coumaroyl glucopyranoside (4) and apigenin-7-O-(6″-Z-p-coumaroyl)-β-d-glucopyranoside (5), in addition to amentoflavone (1), apigenin-7-O-β-d-glucopyranoside (2), apigenin-7-O-6″-E-p-coumaroyl-β-d-glucopyranoside (3) and rutin (6). The structures of isolated compounds were established by 1D, 2D NMR and HRESIMS spectral data, in addition to comparison with literature data. The anti-inflammatory activities of isolated compounds were assessed by measuring the levels of IL-1β, IL-6, TNF-α and PGE2 in the supernatant media of human peripheral blood mononuclear cells (PBMCs) stimulated by phytohaemagglutinin (PHA). At a concentration of 100 μM, compounds 1, 2, 4 and 6 significantly decreased Il-1β, Il-6 and PGE2 to nearly normal values. All tested compounds caused a dose-dependent decrease in TNF-α level but failed to reach that of the control values.  相似文献   

10.
Four novel 2-styrylchromones, 4′,5,7-trihydroxy-6-isopentene-2-styrylchromone (1), 4′,5,7-trihydroxy-8-isopentene-2-styrylchromone (2), 4′,5,7-trihydroxy-6-(2-hydroxy-3-methylbut-3-enyl)-2-styrylchromone (3) and 4′,5,7-trihydroxy-8-(2-hydroxy-3-methylbut-3-enyl)-2-styrylchromone (4), were isolated from shed bark of Platanus × acerifolia (Aiton) Willd., as well as four known compounds, 4′,5,7-trihydroxy-2-styrylchromone (5), scutellarein (6), 4′,5,7-trihydroxy-6-prenylflavone (7), and 4′,5,7-trihydroxy-8-prenylflavone (8). The structures of compounds 14 were established by direct interpretation of their spectral data, mainly high resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1D and 2D NMR (1H–1H COSY, HSQC and HMBC). The cytotoxicity of the compounds 18 was evaluated in four human carcinoma cell lines, including HepG2, SMMC-7721, MDA-MB-231, and KB. Compounds 14 exhibited significantly cytotoxic activity toward HepG2 and KB cells, with IC50 values ranging from 3.0 to 9.7 μM.  相似文献   

11.
Investigation of the Red Sea marine tunicate Symplegma rubra Monniot, 1972 gave three new purine alkaloids namely 6-methoxy-7,9-dimethyl-8-oxoguanine (1), 6-methoxy-9-methyl-8-oxoguanine (2), and 2-methoxy-7-methyl-8-oxoadenine (4) together with seven known compounds: 6-methoxy-7-methyl-8-oxoguanine (3), 9-methyl-8-oxoadenine (5), 7-methyl-8-oxoadenine (6), 8-oxoadenine (7), 3-methylxanthine (8), inosine (9), and homarine (pyridinium-2-carboxylic acid-1-methyl) (10). Compound 6 was reported here for the first time from a natural source. The structure determination of the compounds was accomplished by extensive interpretation of their spectroscopic data including 1D (1H and 13C) and 2D (1H–1H COSY, HSQC, and HMBC) NMR and high-resolution mass spectral data. The isolated compounds were evaluated for their protein kinase inhibitory activity against different kinases (CDK5, CK1, DyrK1A, and GSK3) at 10 μg/mL. The compounds showed moderate activity against these kinases.  相似文献   

12.
In continuation of our efforts to identify bioactive compounds from the Red Sea marine sponges, we have recently investigated the organic extract of the sponge Biemna ehrenbergi. This study resulted in the isolation of eight compounds including a new sterol, ehrenasterol (1), a new C24-acetylenic acid, biemnic acid (2), together with six known compounds including a hopanoid, three steroids and two nucleosides. The isolated compounds were identified as (22E)-ergosta-22-ene-8,14-epoxy-3,7-dione (1), (E)-tetracos-8-en-5-ynoic acid (2), (22E)-ergosta-5,8,22-trien-7-one-3β-ol (3), 32,35-anhydrobacteriohopanetetrol (4), (24R)-ergosta-6,22-diene-5,8-epidioxy-3-ol (5), melithasterol B (6), thymidine (7) and 2′-deoxyuridine (8). The structures of the isolated compounds were assigned by different spectral data including 1D and 2D NMR (COSY, HSQC, and HMBC) and high-resolution mass spectrometry. Compound 1 displayed inhibition zone of 20 mm at 100 μg/disc against Escherichia coli in the disc diffusion assay. Similarly, compounds 2 and 4 displayed inhibition zones of 20 and 18 mm respectively against Candida albicans at the same concentration. Compounds 13 displayed weak cytotoxic activity against human colon adenocarcinoma (HCT-116) cancer cell line.  相似文献   

13.
Two new protolimonoid compounds, namely, argentinin A (1) and B (2) along with five known triterpenoid compounds, dammar-24-en-3α-ol (3), 3-epi-cabraleahydroxy lactone (4), (E)-25-hydroperoxydammar-23-en-3β,20-diol (5), mixture of eichlerianic acid and shoreic acid (6a and 6b), and dammar-24-en-3α,20-diol (7), were isolated from the stem bark of Aglaia argentea. The structure of new compounds were elucidated by spectroscopic methods including one and two-dimensional NMR as well as high-resolution mass spectrometric analysis. All of the compounds were tested for their cytotoxic effects against P-388 murine leukemia cells in vitro. Among those isolated compounds, argentinin A (1) showed the strongest activity with an IC50 value of 1.27 μg/mL (3.05 μM).  相似文献   

14.
Pleurotus cornucopiae (Pleurotaceae) is an edible and medicinal mushroom widely distributed in Korea, China, and Japan. The MeOH extract of the fruiting bodies of P. cornucopiae showed renoprotective effects against cisplatin-induced kidney cell damage. Chemical investigation of the MeOH extract led to the isolation and identification of 12 compounds including noransine (1), uridine (2), uracil (3), (3β, 5α, 6β, 22E, 24S) -ergosta-7, 22-diene-3, 5, 6, 9-tetrol (4), (22E,24S)-ergosta-7,22-diene-3β,5α,6β-triol (5), (22E,24R)-ergosta-8(14),22-diene-3β,5α,6β,7α-tetrol (6), cerebroside B (7), (2R) -N- [(1S, 2R, 3E, 7E) -1- [(β-d-glucopyranosyloxy) methyl] -2-hydroxy-8-methyl-3, 7-heptadecadien-1-yl] -2-hydroxy-heptadecanamide (8), cerebroside D (9), nicotinamide (10), 1,2-bis(hydroxymethyl)-4,5-dimethoxybenzene (11), and benzoic acid (12). Among them, compounds 1 and 11 were isolated as naturally occurring products for the first time, though they were reported as synthetic products in previous papers. All of the compounds (except 8 and 11) abrogated cisplatin-induced LLC-PK1 cell damage in a dose-dependent manner. Of special note, compounds 2, 5, 6, and 12 ameliorated cisplatin-induced nephrotoxicity to 80% of the control value at 10 μM. The protective effects of compounds 2, 5, 6, and 12 were mediated via the deactivation of JNK-caspase 3 apoptotic cascade. This study is the first to demonstrate that the chemical constituents of P. cornucopiae display renoprotective effects against anticancer drug-induced damage in kidney cells.  相似文献   

15.
Three known iridoid glycosides, verminoside (1), 6-O-trans-caffeoyl-ajugol (2), and 10-O-trans-caffeoyl-catalpol (3), together with 1-β-O-caffeoyl-d-glucose (4), caffeic acid (5), and a flavonol glycoside, rutin (6), were isolated from the leaves of Perichlaena richardii Baill. (Bignoniaceae), an endemic species to Madagascar. This is the first report of these compounds from this species. The structures of the isolated compounds were established using different spectroscopic methods including extensive 1D and 2D-NMR and mass spectrometry. The activity of verminoside, rutin and caffeic acid on enzymes involved in inflammation, cyclooxygenases and lipoxygenases, was determined on human peripheral venous blood samples. Moreover, the distribution of iridoids among the clades of Bignoniaceae, according to Von Poser et al. in 2000, was revisited on the basis of the new classification of Bignoniaceae described in 2009 by Olmstead et al. The chemotaxonomy of iridoids isolated from P. richardii, in addition to the Bignoniaceae family as a whole, is also discussed.  相似文献   

16.
Phytochemical investigation of the leaves and twigs of Tabernaemontana bovina led to the isolation of 10 monoterpenoid indole alkaloids, including two new taberbovinines A (1) and B (2) along with eight known analogs: mehranine (3), 14α,15β-dihydroxy-N-methylaspidospermidine (4), (16S*)− 15-epi-E-isositsirikine (5), (16R*)− 15-epi-E-isositsirikine (6), 16 R*-19,20-E-isositsirikine acetate (7), hecubine (8), voafinidine (9), and voacangarine (10). Taberbovinine B (2) represents the first case of an unusual ring C/D cleavage among the natural Corynanthe-type alkaloids. Compounds 2 and 8 exhibited weak cytotoxicity against five human cancer cell lines, including SK-LU-1, HepG2, MCF-7, SK-Mel-2, and LNCaP, with IC50 values ranging from 42.9 to 66.3 μM, whereas compounds 4 − 6 and 9 were cytotoxic toward MCF-7, SK-LU-1 and LNCaP cells, with IC50 values in a range of 51.6–93.3 μM.  相似文献   

17.
Three new iridoid glycosides, 6″-O-trans-caffeoylgenipin gentiobioside (1), genipin 1-O-β-d-apiofuranosyl (1→6)-β-d-glucopyranoside (2), genipin 1-O-α-d-xylopyranosyl (1→6)-β-d-glucopyranoside (3), three new monocyclic monoterpenoids, jasminoside R (4), jasminoside S (5), jasminoside T (6), together with nine known iridoid glycosides (715) and three crocetin glycosides (1618), were isolated from the fruit of Gardenia jasminoides. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. Inhibitory effects of the isolated compounds on nitric oxide production in lipopolysaccaride-activated macrophages were evaluated. Compounds 8 and 18 showed strong inhibitory activity on NO production with IC50 values of 11.14 ± 0.67 and 5.99 ± 0.54 μM, respectively.  相似文献   

18.
A bioassay guided isolation of potential antimalarial molecules from the stem bark of Caesalpinia volkensii Harms (Fabaceae) achieved three new 11-oxocassane-type diterpenoids named voulkensin C (1), D (2) and E (3) together with one steroid glycoside named 3-O-[β-glucopyranosyl(1→2)-O-β-xylopyranosyl]-stigmasterol (4) and seven other known compounds including stigmasterol (5), β-sitosterol (6), oleanolic acid (7), 3-β-acetoxyolean-12-en-28-methyl ester (8), voucap-5-ol (9), caesadekarin C (10), deoxycaesaldekarin C (11). The structures of the new compounds were determined on the basis of extensive spectroscopic data (IR, MS, 1H and 13C NMR and 2D NMR) analyses. The polar extracts revealed moderate to good antiplasmodial activities against chloquine-sensitive (D6) and -resistant strains (W2) of Plasmodium falciparum. Whereas the pure isolates exhibited limited to moderate antiplasmodial activities with compound 4 showing the highest antiplasmodial activities (IC50 values of 4.44 ± 0.88 and 2.74 ± 1.10 μM against D6 and W2 strains, respectively). These results suggest a possible contribution of phytochemicals from C. volkensii stem bark towards inhibition of plasmodial parasites’ growth hence potential antimalarial.  相似文献   

19.
The chemical investigation of the CH2Cl2/MeOH (1:1) extract of the leaves of Rothmannia hispida (K. Schum.) Fagerl. (Rubiaceae) led to the isolation of a new ceramide rothmanniamide (1) and a naturally isolated alkyl cinnamate derivative n-heptadecyl-4-hydroxy-trans-cinnamate (2), along with fifteen known compounds including lupeol palmitate (3), lupeol (4), a mixture of uvaol (5) and erythrodiol (6), ursolic acid (7), 30-nor-2α,3β-dihydroxyurs-12-ene (8), hederagenin (9), stigmast-22-en-3-ol (10), a mixture of β-sitosterol (11) and stigmasterol (12), stigmast-4,22-dien-3-ol (13), stigmasterol 3-O-β-D-glucoside (14), triacontan-1-ol (15), kaempferol 3-O-β-D-glucopyranoside (16) and D-mannitol (17). Their structures were elucidated with the help of MS and NMR data. Compounds 8, 10 and 15 were isolated for the first time from the Rubiaceae family. The crude extract and the isolates were assessed in vitro for their antileishmanial activity against Leishmania donovani 1 S (MHOM/SD/62/1 S) promastigotes and cytotoxicity on RAW 264.7 macrophage cells. Compounds 7 and 8 exhibited a highly potent antileishmanial activity with IC50 values of 0.88 and 1.75 μg/mL, respectively, with good selectivity indexes (SI > 57). The chemophenetic significance of these compounds is also discussed.  相似文献   

20.
Clostridium perfringens is a Gram-positive spore-forming bacterium that causes food poisoning. The neuraminidase (NA) protein of C. perfringens plays a pivotal role in bacterial proliferation and is considered a novel antibacterial drug target. Based on screens for novel NA inhibitors, a 95% EtOH extract of Corydalis turtschaninovii rhizome showed NA inhibitory activity (68% at 30 μg/ml), which resulted in the isolation of 10 isoquinoline alkaloids; namely, palmatine (1), berberine (2), coptisine (3), pseudodehydrocorydaline (4), jatrorrhizine (5), dehydrocorybulbine (6), pseudocoptisine (7), glaucine (8), corydaline (9) and tetrahydrocoptisine (10). Interestingly, seven quaternary isoquinoline alkaloids 17 (IC50 = 12.8 ± 1.5 to 65.2 ± 4.5 μM) showed stronger NA inhibitory activity than the tertiary alkaloids 810. In addition, highly active compounds 1 and 2 showed reversible non-competitive behavior based on a kinetic study. Molecular docking simulations using the Autodock 4.2 software increased our understanding of receptor–ligand binding of these compounds. In addition, we demonstrated that compounds 1 and 2 suppressed bacterial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号