首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fabry disease results from deficient alpha-galactosidase A (alpha-Gal A) activity and the pathologic accumulation of the globotriaosylceramide (GL-3) and related glycosphingolipids, primarily in vascular endothelial lysosomes. Treatment is currently palliative, and affected patients generally die in their 40s or 50s. Preclinical studies of recombinant human alpha-Gal A (r-halphaGalA) infusions in knockout mice demonstrated reduction of GL-3 in tissues and plasma, providing rationale for a phase 1/2 clinical trial. Here, we report a single-center, open-label, dose-ranging study of r-halphaGalA treatment in 15 patients, each of whom received five infusions at one of five dose regimens. Intravenously administered r-halphaGalA was cleared from the circulation in a dose-dependent manner, via both saturable and non-saturable pathways. Rapid and marked reductions in plasma and tissue GL-3 were observed biochemically, histologically, and/or ultrastructurally. Clearance of plasma GL-3 was dose-dependent. In patients with pre- and posttreatment biopsies, mean GL-3 content decreased 84% in liver (n=13), was markedly reduced in kidney in four of five patients, and after five doses was modestly lowered in the endomyocardium of four of seven patients. GL-3 deposits were cleared to near normal or were markedly reduced in the vascular endothelium of liver, skin, heart, and kidney, on the basis of light- and electron-microscopic evaluation. In addition, patients reported less pain, increased ability to sweat, and improved quality-of-life measures. Infusions were well tolerated; four patients experienced mild-to-moderate reactions, suggestive of hypersensitivity, that were managed conservatively. Of 15 patients, 8 (53%) developed IgG antibodies to r-halphaGalA; however, the antibodies were not neutralizing, as indicated by unchanged pharmacokinetic values for infusions 1 and 5. This study provides the basis for a phase 3 trial of enzyme-replacement therapy for Fabry disease.  相似文献   

2.
Two recombinant human granulocyte colony-stimulating factor (rhG-CSF) isoforms were isolated from the medium conditioned by an engineered Chinese hamster ovary (CHO) cell line. The two rhG-CSFs were characterized and were found to differ in the carbohydrate structure attached to Thr-133. The glycoform, referred to as Peak 1, contains the O-linked glycan Neu5Ac(alpha 2-3)Gal(beta 1-3)GalNAc; the Peak 2 glycoform contains the O-linked glycan Neu5Ac(alpha 2-3)Gal(beta 1-3)[Neu5Ac(alpha 2-6)]GalNAc. The two glycoforms displayed a similar biological activity in cultures of a mouse 32D C13 cell line and human bone-marrow myelo-monocytic progenitor cells (CFU-GM). In the latter test both glycoforms displayed a higher activity than nonglycosylated rMet-hG-CSF from Escherichia coli. The pharmacokinetic profile and activity of the two rhG-CSF glycoforms and of a mixture of them (Pool) were investigated in mice treated with a single injection of rhG-CSF at the doses of 125 micrograms and 250 micrograms/kg, given via the intravenous (i.v.) and the subcutaneous (s.c.) route, respectively. The plasma concentration profiles obtained were similar for all three substances and did not show any relevant differences in absorption or elimination. The pharmacokinetic parameters indicate that the three substances have similar area under the curve (AUCs), volumes of distribution, and terminal half-life. Furthermore, our data indicate a high bioavailability of the two different glycoforms of rhG-CSF when given to mice via the s.c. route either singularly or as a mixture. Detectable levels of rhG-CSF persisted for more than 8 h in the i.v. and more than 24 h in the s.c. route of administration. All three substances induced early neutrophilia in mice. All rhG-CSF-treated mice developed a two-four-fold rise in neutrophil counts as early as 4 h after the intravenous and 2 h after the subcutaneous injection. Relatively high levels of neutrophils were maintained for at least 8 and 24 h after i.v. and s.c. administration, respectively.  相似文献   

3.
Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal hydrolase α-galactosidase A (α-gal). This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide (GL-3) in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular disease. The current treatment for Fabry disease is through infusions of recombinant α-gal (enzyme-replacement therapy; ERT). Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT) has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we show that such an inhibitor (eliglustat tartrate, Genz-112638) was effective at lowering GL-3 accumulation in a mouse model of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility of an improved therapeutic paradigm in the management of Fabry disease.  相似文献   

4.
Recombinant human erythropoietin (rhEPO), a glycohormone, is one of the leading biopharmaceutical products. The production of rhEPO is currently restricted to mammalian cell expression systems because of rhEPO's highly complex glycosylation pattern, which is a major determinant for drug-efficacy. Here we evaluate the ability of plants to produce different glycoforms of rhEPO. cDNA constructs were delivered to Nicotiana benthamiana (N. benthamiana) and transiently expressed by a viral based expression system. Expression levels up to 85 mg rhEPO/kg fresh leaf material were achieved. Moreover, co-expression of rhEPO with six mammalian genes required for in planta protein sialylation resulted in the synthesis of rhEPO decorated mainly with bisialylated N-glycans (NaNa), the most abundant glycoform of circulating hEPO in patients with anemia. A newly established peptide tag (ELDKWA) fused to hEPO was particularly well-suited for purification of the recombinant hormone based on immunoaffinity. Subsequent lectin chromatography allowed enrichment of exclusively sialylated rhEPO. All plant-derived glycoforms exhibited high biological activity as determined by a cell-based receptor-binding assay. The generation of rhEPO carrying largely homogeneous glycosylation profiles (GnGnXF, GnGn, and NaNa) will facilitate further investigation of functionalities with potential implications for medical applications.  相似文献   

5.
We have identified a gene for the addition of N- acetylneuraminic acid (Neu5Ac) in an α-2,3-linkage to a lactosyl acceptor moiety of the lipopolysaccharide (LPS) of the human pathogen Haemophilus influenza e. The gene is one that was identified previously as a phase-variable gene known as lic3A . Extracts of H. influenzae , as well as recombinant Escherichia coli strains producing Lic3A, demonstrate sialyltransferase activity in assays using synthetic fluorescent acceptors with a terminal galactosyl, lactosyl or N- acetyl-lactosaminyl moiety. In the RM118 strain of H. influenzae , Lic3A activity is modulated by the action of another phase-variable glycosyltransferase, LgtC, which competes for the same lactosyl acceptor moiety. Structural analysis of LPS from a RM118: lgtC mutant and the non-typeable strain 486 using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy confirmed that the major sialylated species has a sialyl-α-(2–3)-lactosyl extension off the distal heptose. This sialylated glycoform was absent in strains containing a lic3A gene disruption. Low amounts of sialylated higher molecular mass glycoforms were present in RM118: lgtC lic3A , indicating the presence of a second sialyltransferase. Lic3A mutants of H. influenzae strains show reduced resistance to the killing effects of normal human serum. Lic3A , encoding an α-2,3-sialyltransferase activity, is the first reported phase-variable sialyltransferase gene.  相似文献   

6.
The lipooligosaccharide (LOS) of Haemophilus influenzae contains sialylated glycoforms, and a sialyltransferase, Lic3A, has been previously identified. We report evidence for two additional sialyltransferases, SiaA, and LsgB, that affect N-acetyllactosamine containing glycoforms. Mutations in genes we have designated siaA and lsgB affected only the sialylated glycoforms containing N-acetylhexosamine. A mutation in siaA resulted in the loss of glycoforms terminating in sialyl-N-acetylhexosamine and the appearance of higher molecular weight glycoforms, containing the addition of phosphoethanolamine, N-acetylgalactosamine, and N-acetylneuraminic acid. Chromosomal complementation of the siaA mutant resulted in the expression of the original sialylated LOS phenotype. A mutation in lic3A resulted in the loss of sialylation only in glycoforms lacking N-acetylhexosamine and had no effect on sialylation of the terminal N-acetyllactosamine epitope. A double mutant in siaA and lic3A resulted in the complete loss of sialylation of the terminal N-acetyllactosamine epitope and expression of the higher molecular weight sialylated glycoforms seen in the siaA mutant. Mutation of lsgB resulted in persistence of sialylated glycoforms but a reduction in N-acetyllactosamine containing glycoforms. A triple mutant of siaA, lic3A, and lsgB contained no sialylated glycoforms. These results demonstrate that the sialylation of the LOS of H. influenzae is a complex process involving multiple sialyltransferases.  相似文献   

7.
Human alpha-galactosidase A (alpha-Gal A) is the lysosomal glycohydrolase that cleaves the terminal alpha-galactosyl moieties of various glycoconjugates. Overexpression of the enzyme in Chinese hamster ovary (CHO) cells results in high intracellular enzyme accumulation and the selective secretion of active enzyme. Structural analysis of the N -linked oligosaccharides of the intracellular and secreted glycoforms revealed that the secreted enzyme's oligosaccharides were remarkably heterogeneous, having high mannose (63%), complex (30%), and hybrid (5%) structures. The major high mannose oligosaccharides were Man5-7GlcNAc2 species. Approximately 40% of the high mannose and 30% of the hybrid oligosaccharides had phosphate monoester groups. The complex oligosaccharides were mono-, bi- , 2,4-tri-, 2,6-tri- and tetraantennary with or without core-region fucose, many of which had incomplete outer chains. Approximately 30% of the complex oligosaccharides were mono- or disialylated. Sialic acids were mostly N -acetylneuraminic acid and occurred exclusively in alpha2, 3-linkage. In contrast, the intracellular enzyme had only small amounts of complex chains (7.7%) and had predominantly high mannose oligosaccharides (92%), mostly Man5GlcNAc2 and smaller species, of which only 3% were phosphorylated. The complex oligosaccharides were fucosylated and had the same antennary structures as the secreted enzyme. Although most had mature outer chains, none were sialylated. Thus, the overexpression of human alpha-Gal A in CHO cells resulted in different oligosaccharide structures on the secreted and intracellular glycoforms, the highly heterogeneous secreted forms presumably due to the high level expression and impaired glycosylation in the trans- Golgi network, and the predominately Man5-7GlcNAc2 cellular glycoforms resulting from carbohydrate trimming in the lysosome.   相似文献   

8.
Fabry disease is an inborn error of glycosphingolipid metabolism caused by the deficiency of lysosomal alpha-galactosidase A (alpha-Gal A). We have established transgenic mice that exclusively express human mutant alpha-Gal A (R301Q) in an alpha-Gal A knock-out background (TgM/KO mice). This serves as a biochemical model to study and evaluate active-site specific chaperone (ASSC) therapy for Fabry disease, which is specific for those missense mutations that cause misfolding of alpha-Gal A. The alpha-Gal A activities in the heart, kidney, spleen, and liver of homozygous TgM/KO mice were 52.6, 9.9, 29.6 and 44.4 unit/mg protein, respectively, corresponding to 16.4-, 0.8-, 0.6- and 1.4-fold of the endogenous enzyme activities in the same tissues of non-transgenic mice with a similar genetic background. Oral administration of 1-deoxygalactonojirimycin (DGJ), a competitive inhibitor of alpha-Gal A and an effective ASSC for Fabry disease, at 0.05 mM in the drinking water of the mice for 2 weeks resulted in 13.8-, 3.3-, 3.9-, and 2.6-fold increases in enzyme activities in the heart, kidney, spleen and liver, respectively. No accumulation of globotriaosylceramide, a natural substrate of alpha-Gal A, could be detected in the heart of TgM/KO mice after DGJ treatment, indicating that degradation of the glycolipid in the heart was not inhibited by DGJ at that dosage. The alpha-Gal A activity in homozygous or heterozygous fibroblasts established from TgM/KO mice (TMK cells) was approximately 39 and 20 unit/mg protein, respectively. These TgM/KO mice and TMK cells are useful tools for studying the mechanism of ASSC therapy, and for screening ASSCs for Fabry disease.  相似文献   

9.
Using a nonengineered Trichoplusia ni insect cell line, Tn-4s, infected with an Autographa californica recombinant baculovirus, 20% sialylation of human secreted placental alkaline phosphatase (SEAP) was observed. In contrast to this level of sialylation, intermediate complex forms with terminal galactose or N-acetylglucosamine were found in low proportions (<3% and <1%, respectively). We tested whether time of harvest or degradation of intermediate complex forms is responsible for this distribution of glycoforms. Spinner-flask cultures were infected with the SEAP baculovirus expression vector, and the cultures were harvested 48, 72, and 96 h post-infection. Structural analysis revealed that the glycoform distribution of SEAP was very similar at the different times of harvest, indicating that the cellular machinery was not significantly affected by the progress of infection and that the glycoforms obtained were stable. High levels of beta-galactosidase and N-acetylglucosaminidase activity were detected throughout infection. In contrast, sialidase activity was below detection level both in cell extracts and in supernatants. These levels of glycosidases activities raise the possibility that intermediate complex glycoforms may be degraded while sialylated forms should not experience significant degradation in this cell line. However, culture in the presence of extracellular beta-galactosidase and N-acetylglucosaminidase inhibitors did not significantly improve glycosylation, suggesting that extracellular degradation processes are not taking place. Instead, results suggest that the intracellular machinery of the Tn-4s cells tends to either shunt the glycans to paucimannosidic forms or drive them completely to sialylation.  相似文献   

10.
One of the biochemical characteristics of carbohydrate deficient glycoprotein syndromes is the presence of abnormal glycoforms in serum transferrin. Both glycoform heterogeneity and variable site occupancy may, in principle, lead to the generation of a range of glycoforms which contain different numbers of sialic acid residues, and therefore variable amounts of negative charge. Capillary zone electrophoresis was used to resolve the glycoforms of normal human serum transferrin and also of a set of glycoforms which were prepared by digesting the sugars on the intact glycoprotein with sialidase. The sugars on the intact glycoprotein were also modified by a series of exoglycosidase enzymes to produce a series of neutral glycoforms which were also analysed by capillary zone electrophoresis. The oligosaccharide population of human serum transferrin was analysed by a series of mixed exoglycosidase digests on the released glycan pool and quantified using a novel HPLC strategy. Transferrin was isolated from carbohydrate deficient glycoprotein syndromes type I serum and both the intact glycoforms and released sugars were resolved and quantified. The data presented here confirm the presence of a hexa-, penta- and tetra-sialoforms of human serum transferrin in both normal and carbohydrate deficient glycoprotein syndrome type I serum samples. Consistent with previous reports carbohydrate deficient glycoprotein syndrome type I transferrin also contained a di-sialoform, representing a glycoform in which one of the two N-glycosylation sites is unoccupied, and a non-glycosylated form where both remain unoccupied. This study demonstrates that capillary zone electrophoresis can be used to resolve quantitatively both sialylated and neutral complex type glycoforms, suggesting a rapid diagnostic test for the carbohydrate deficient glycoprotein syndromes group of diseases.Abbreviations CDGS Carbohydrate Deficient Glycoprotein Syndrome - CZE Capillary Zone Electrophoresis - hTf human transferrin - gu HPLC glucose units - EOF electroosmotic flow. Nomenclature: for describing oligosaccharide structures: A(1,2,3,4) indicates the number of antennae linked to the t trimannosyl core - G(0–4) indicates the number of terminal galactose residues in the structure - F core fucose - B bisecting N-acetyl glucosamine (GlcNAc) - S sialic acid - Gal galactose; M - Man mannose  相似文献   

11.
Kang KK  Ahn GJ  Shim HJ  Kwon JW 《Life sciences》2004,75(9):1075-1083
DA-8159 is a pyrazolopyrimidinone derivative which is a potent and selective phosphodiesterase type 5 inhibitor. The efficacy of oral DA-8159 has been demonstrated in conscious and spinalized rabbits by its enhancement of nitric oxide-induced erections. The aim of this study was to investigate the time dependency of this efficacy on its plasma concentration in rabbits. DA-8159 was given orally to normal rabbits at a dose of 10 or 30 mg/kg in order to determine its pharmacokinetic parameters. After then, to investigate the relationship between penile erectile activity and plasma half-life, a dose of 10 mg/kg DA-8159 was administered and the erectile response was examined in a time-course manner by measuring the length of the uncovered penile mucosa after the intravenous administration of sodium nitroprusside, which was administered 1, 3, 6, 8, 24 hours after administering DA-8159. DA-8159 was absorbed rapidly with a Tmax of 0.6 hours in 30 mg/kg and 1.0 hour in the 10 mg/kg group, and T1/2 of 1.23 hours in 30 mg/kg and 1.17 hours in 10 mg/kg, respectively. DA-8159 was not detected in the blood plasma 3 hours (10 mg/kg) or 6 hours (30 mg/kg) after administration. In an erection test, DA-8159 alone (10 mg/kg) induced a penile erection for approximately 2 hours but there was no significant erection thereafter. Although the DA-8159-induced penile erection disappeared, an intravenous injection of sodium nitroprusside significantly induced a penile erection for 6 hours, when the plasma drug concentration was below the detection limit and a no longer visible erection was noted. These results demonstrate that DA-8159 is absorbed and rapidly cleared in rabbits. In addition, it can enhance a sodium nitroprusside-induced penile erection even after 6 hours, which is approximately five times longer than the plasma half-life in the rabbits. These results suggest that DA-8159 may have an erectile potential for much longer than its measured half-life.  相似文献   

12.
Sevigny MB  Li CF  Alas M  Hughes-Fulford M 《FEBS letters》2006,580(28-29):6533-6536
Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in the prostanoid biosynthesis pathway, converting arachidonic acid into prostaglandin H(2). COX-2 exists as 72 and 74kDa glycoforms, the latter resulting from an additional oligosaccharide chain at residue Asn(580). In this study, Asn(580) was mutated to determine the biological significance of this variable glycosylation. COS-1 cells transfected with the mutant gene were unable to express the 74kDa glycoform and were found to accumulate more COX-2 protein and have five times greater COX-2 activity than cells expressing both glycoforms. Thus, COX-2 turnover appears to depend upon glycosylation of the 72kDa glycoform.  相似文献   

13.
The efficacy of our capillary electrophoresis method for simultaneous estimation of the association constants of glycoprotein glycoforms to a common target protein was demonstrated using ribonuclease and ovalbumin glycoforms as glycoform models and Lens culinaris agglutinin (LCA) as a protein model. The ribonuclease glycoforms were fairly well separated in the absence of LCA at pH 5.8, but the peaks were retarded without any change of separation profile in the presence of LCA, the retardation becoming greater as LCA concentration increased. The estimated values of apparent association constant (K(a)) were at the 10(6)M(-1) level for all the ribonuclease glycoforms, and there was no significant difference among glycoforms. The high-mannose-type N-glycans released from a mixture of ribonuclease glycoforms gave lower values of K(a) at the 10(4)-10(5)M(-1) level to the same protein, and the glycans having a larger number of the mannose residue gave larger K(a) values. These results imply that the glycan moiety in this glycoprotein might contribute to its binding to the protein, but the polypeptide core played the major role. In contrast, ovalbumin glycoforms gave poorly resolved peaks in the absence of LCA, but they were separated into several peaks in the presence of LCA, which were tentatively assigned based on the knowledge of affinity to this lectin, and K(a) values were estimated simultaneously. The estimated K(a) values were smaller than those of the ribonuclease glycoforms, suggesting the major role of the N-glycan moiety. Thus, capillary electrophoresis allowed simultaneous estimation of K(a) values under common conditions using small amounts of glycoform mixtures and proteins without prior isolation and purification. Comparison of the obtained values will provide useful information on the glycan structure-affinity correlation.  相似文献   

14.
The effector functions of therapeutic antibodies are strongly affected by the specific glycans added to the Fc domain during post-translational processing. Antibodies bearing high levels of N-linked mannose-5 glycan (Man5) have been reported to exhibit enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) compared with antibodies with fucosylated complex or hybrid glycans. To better understand the relationship between antibodies with high levels of Man5 and their biological activity in vivo, we developed an approach to generate substantially homogeneous antibodies bearing the Man5 glycoform. A mannosidase inhibitor, kifunensine, was first incorporated in the cell culture process to generate antibodies with a distribution of high mannose glycoforms. Antibodies were then purified and treated with a mannosidase for trimming to Man5 in vitro. This 2-step approach can consistently generate antibodies with > 99% Man5 glycan. Antibodies bearing varying levels of Man5 were studied to compare ADCC and Fcγ receptor binding, and they showed enhanced ADCC activity and increased binding affinity to the FcγRIIIA. In addition, the clearance rate of antibodies bearing Man8/9 and Man5 glycans was determined in a pharmacokinetics study in mice. When compared with historical data, the antibodies bearing the high mannose glycoform exhibited faster clearance rate compared with antibodies bearing the fucosylated complex glycoform, while the pharmacokinetic properties of antibodies with Man8/9 and Man5 glycoforms appeared similar. In addition, we identified the presence of a mannosidase in mouse serum that converted most Man8/9 to Man6 after 24 h.  相似文献   

15.
Human lysosomal alpha-galactosidase A (alpha-Gal A) was stably overexpressed in CHO cells and its biosynthesis and targeting were investigated. Clone AGA5.3-1000Mx, which was the highest enzyme overexpressor, produced intracellular alpha-Gal A levels of 20,900 U/mg (approximately 100 micrograms of enzyme/10(7) cells) and secreted approximately 13,000 U (or 75 micrograms/10(7) cells) per day. Ultrastructural examination of these cells revealed numerous 0.25-1.5 microns crystalline structures in dilated trans-Golgi network (TGN) and in lysosomes which stained with immunogold particles using affinity-purified anti-human alpha-Gal A antibodies. Pulse-chase studies revealed that approximately 65% of the total enzyme synthesized was secreted, while endogenous CHO lysosomal enzymes were not, indicating that the alpha-Gal A secretion was specific. The recombinant intracellular and secreted enzyme forms were normally processed and phosphorylated; the secreted enzyme had mannose-6-phosphate moieties and bound the immobilized 215-kD mannose-6-phosphate receptor (M6PR). Thus, the overexpressed enzyme's selective secretion did not result from oversaturation of the M6PR-mediated pathway or abnormal binding to the M6PR. Of note, the secreted alpha-Gal A was sulfated and the percent of enzyme sulfation decreased with increasing amplification, presumably due to the inaccessibility of the enzyme's tyrosine residues for the sulfotransferase in the TGN. Overexpression of human lysosomal alpha-N-acetylgalactosaminidase and acid sphingomyelinase in CHO cell lines also resulted in their respective selective secretion. In vitro studies revealed that purified secreted alpha-Gal A was precipitated as a function of enzyme concentration and pH, with 30% of the soluble enzyme being precipitated when 10 mg/ml of enzyme was incubated at pH 5.0. Thus, it is hypothesized that these overexpressed lysosomal enzymes are normally modified until they reach the TGN where the more acidic environment of this compartment causes the formation of soluble and particulate enzyme aggregates. A significant proportion of these enzyme aggregates are unable to bind the M6PR and are selectively secreted via the constitutive secretory pathway, while endogenous lysosomal enzymes bind the M6PRs and are transported to lysosomes.  相似文献   

16.
Fabry disease is a genetic disorder caused by deficient activity of alpha-galactosidase A (alpha-Gal A). Recent gene analysis of a Fabry patient revealed a point mutation (S65T) resulting in a significant decrease of enzyme activity (Chen, C.-H., et al. (1998) Hum. Mutat. 11, 328-330). In order to evaluate the role of Ser-65 in the alpha-Gal A activity and the molecular mechanism of its deficient enzyme activity in mammalian cells, we prepared gene products of S65T, S65A, and E66D mutations of alpha-Gal A by using an expression system with baculovirus/insect cells and characterized the kinetic and physical properties of those purified enzymes. The Km values of mutant enzymes were 3.5 (S65T), 3.4 (S65A), and 2.3 mM (E66D), using 4-methylumbelliferyl alpha-D-galactoside as a substrate, and the Vmax values were 2.7 x 10(6) (S65T), 3.4 x 10(6) (S65A), and 2.5 x 10(6) units/mg (E66D), respectively, which were similar to those of the normal enzyme (Km, 2.3 mM; Vmax, 2.3 x 10(6) units/mg). The in vitro stability of mutant enzymes at neutral pH was significantly reduced (S65T, 4% of normal; S65A, 29%; E66D, 54%). The intracellular alpha-Gal A activities of S65T, S65A, and E66D in COS1 cells transfected with corresponding plasmid DNAs were markedly lower than the normal enzyme activity (9, 26, and 68% of normal, respectively). However, intracellular enzyme activities were enhanced to 34% (S65T), 44% (S65A), and 80% (E66D) of normal, respectively, by cultivation of the cells with 20 microM 1-deoxygalactonojirimycin (a potent inhibitor of alpha-Gal A) for 24 h. These results suggest that Ser-65 is responsible for the stability of alpha-Gal A but not for the enzyme function.  相似文献   

17.
Four cellobiohydrolase I (CBHI) glycoforms, namely, CBHI-A, CBHI-B, CBHI-C, and CBHI-D, were purified from the cultured broth of Penicillium decumbens JU-A10. All glycoforms had the same amino acid sequence but displayed different characteristics and biological functions. The effects of the N-glycans of the glycoforms on CBH activity were analyzed using mass spectrum data. Longer N-glycan chains at the Asn-137 of CBHI increased CBH activity. After the N-glycans were removed using site-directed mutagenesis and homologous expression in P. decumbens, the specific CBH activity of the recombinant CBHI without N-glycosylation increased by 65% compared with the wild-type CBHI with the highest specific activity. However, the activity was not stable. Only the N-glycosylation at Asn-137 can improve CBH activity by 40%. rCBHI with N-glycosylation only at Asn-470 exhibited no enzymatic activity. CBH activity was affected whether or not the protein was glycosylated, together with the N-glycosylation site and N-glycan structure. N-Glycosylation not only affects CBH activity but may also bring a new feature to a nonhydrolytic CBHI glycoform (CBHI-A). By supplementing CBHI-A to different commercial cellulase preparations, the glucose yield of lignocellulose hydrolysis increased by >20%. After treatment with a low dose (5 mg/g substrate) of CBHI-A at 50 °C for 7 days, the hydrogen-bond intensity and crystalline degree of cotton fibers decreased by 17 and 34%, respectively. These results may provide new guidelines for cellulase engineering.  相似文献   

18.
We studied in the rat the effects of the drug etretinate (Tigason), given at three doses 3, 10, and 30 mg/kg body wt for 1 mo, on the concentrations of Na, K, Ca, Mg, Fe, S, P, Cu, and Zn in the plasma, brain, thymus, heart, liver, lung, kidney, testicle, muscle, and bone. The elements were simultaneously determined in tissues after nitric acid dissolution by inductively coupled plasma emission spectrometry using a JY 48 instrument. At the dose of 3 mg/kg, etretinate did not induce any statistically significant modifications of the element distribution. At the dose of 10 mg/kg, the main observed modifications were in plasma an increase of copper (+38%) and a decrease of zinc (-25%). At the highest dose of 30 mg/kg, some variations of the concentrations of elements in tissues were observed. But, on no account did retinoids induce an alteration of the mineral composition of bone, despite obvious macroscopic bone alterations.  相似文献   

19.
Fabry disease (FD) results from mutations in the gene (GLA) that encodes the lysosomal enzyme α-galactosidase A (α-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of α-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients. A liquid chromatography-tandem mass spectrometry method was developed to measure lyso-Gb3 in mouse tissues and human plasma. Oral administration of migalastat HCl to transgenic mice reduced elevated lyso-Gb3 levels up to 64%, 59%, and 81% in kidney, heart, and skin, respectively, generally equal to or greater than observed for GL-3. Furthermore, baseline plasma lyso-Gb3 levels were markedly elevated in six male FD patients enrolled in Phase 2 studies. Oral administration of migalastat HCl (150 mg QOD) reduced urine GL-3 and plasma lyso-Gb3 in three subjects (range: 15% to 46% within 48 weeks of treatment). In contrast, three showed no reductions in either substrate. These results suggest that measurement of tissue and/or plasma lyso-Gb3 is feasible and may be warranted in future studies of migalastat HCl or other new potential therapies for FD.  相似文献   

20.
Our main objective was to test the efficacy of 6-anilino-5,8-quinolinedione (LY83583) in vivo, a putative inhibitor of cyclic guanosine 3',5'-monophosphate (cGMP) production. If the drug proved capable of lowering plasma, vascular, and kidney levels of cGMP and of inhibiting the hypotensive effect of sodium nitroprusside and methacholine, then LY83583 could be of potential use in exploring the contribution of cGMP to cardiovascular and renal physiology. We found that when administered to trained conscious rats, LY83583 (1-mg/kg bolus, followed by a 2-hr infusion of 3 mg/kg.hr) decreased plasma cGMP concentration by 36% (P less than 0.01). Doubling the dosage of drug (2-mg/kg bolus, 6 mg/kg.hr) decreased plasma cGMP by 46% (P less than 0.05). We next measured tissue levels of cGMP ex vivo from rats that had received LY83583 or vehicle for 2 hr. The cGMP content of aortic segments when LY83583 was infused at the low dose, or renal cortical tissue when LY83583 was infused at both doses, was not significantly different from the cGMP content of tissue from rats that had received vehicle. LY83583 in doses up to 10-mg/kg bolus, followed by 6 mg/kg.hr infusion also failed to attenuate the hypotensive response to sodium nitroprusside or methacholine in conscious rats. Last, we tested whether, in our hands, LY83583 could reduce cGMP of aortic segments and kidney cortical slices in vitro. We found that after 10 min of incubation, 10(-5) M LY83583 decreased intracellular cGMP by approximately 65% and 50% in aortic and kidney tissues, respectively. In order to ascertain whether LY83583 lowered cGMP by stimulating phosphodiesterase, we incubated tissues with 10(-4) M 3-isobutyl-1-methylxanthine to inhibit the enzyme. In the presence of 3-isobutyl-1-methylxanthine LY83583 still exerted an inhibitory effect on cGMP production by aortic and kidney tissues. In conclusion, although LY83583 is a useful agent to lower renal and vascular tissues levels of cGMP in vitro, its efficacy in vivo seems doubtful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号