首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the end of an immune response, activated lymphocyte populations contract, leaving only a small memory population. The deletion of CD8(+) T cells from the periphery is associated with an accumulation of CD8(+) T cells in the liver, resulting in both CD8(+) T cell apoptosis and liver damage. After adoptive transfer and in vivo activation of TCR transgenic CD8(+) T cells, an increased number of activated CD8(+) T cells was observed in the lymph nodes, spleen, and liver of mice treated with anti-TNF-alpha. However, caspase activity was decreased only in CD8(+) T cells in the liver, not in those in the lymphoid organs. These results indicate that TNF-alpha is responsible for inducing apoptosis in the liver and suggest that CD8(+) T cells escaping this mechanism of deletion can recirculate into the periphery.  相似文献   

2.
In situ staining techniques were used to visualize physical interactions between dendritic cell subsets and naive Ag-specific CD4 T cells in the lymph node. Before injection of Ag, CD8(+) dendritic cells and naive OVA-specific CD4 T cells were uniformly distributed throughout the T cell-rich paracortex, whereas CD11b(+) dendritic cells were located mainly in the outer edges of the paracortex near the B cell-rich follicles. Many OVA-specific CD4 T cells were in contact with CD8(+) dendritic cells in the absence of OVA. Within 24 h after s.c. injection of soluble OVA, the OVA-specific CD4 T cells redistributed to the outer paracortex and interacted with CD11b(+), but not CD8(+) dendritic cells. This behavior correlated with the uptake of OVA and the presence of peptide-MHC complexes on the surface of CD11b(+) dendritic cells, and subsequent IL-2 production by the Ag-specific CD4 T cells. These results are consistent with the possibility that CD11b(+) dendritic cells play a central role in the activation of CD4 T cells in response to s.c. Ag.  相似文献   

3.
The low precursor frequency of individual virus-specific CD8(+) T cells in a naive host makes the early events of CD8(+) T cell activation, proliferation, and differentiation in response to viral infection a challenge to identify. We have therefore examined the response of naive CD8(+) T cells to pulmonary influenza virus infection with a murine adoptive transfer model using hemagglutinin-specific TCR transgenic CD8(+) T cells. Initial activation of CD8(+) T cells occurs during the first 3 days postinfection exclusively within the draining lymph nodes. Acquisition of CTL effector functions, including effector cytokine and granule-associated protease expression, occurs in the draining lymph nodes and differentially correlates with cell division. Division of activated CD8(+) T cells within the draining lymph nodes occurs in an asynchronous manner between days 3 and 4 postinfection. Despite the presence of Ag for several days within the draining lymph nodes, dividing T cells do not appear to maintain contact with residual Ag. After multiple cell divisions, CD8(+) T cells exit the draining lymph nodes and migrate to the infected lung. Activated CD8(+) T cells also disseminate throughout lymphoid tissue including the spleen and distal lymph nodes following their emigration from draining lymph nodes. These results demonstrate an important role for draining lymph nodes in orchestrating T cell responses during a local infection of a discrete organ to generate effector CD8(+) T cells capable of responding to infection and seeding peripheral lymphoid tissues.  相似文献   

4.
Naive CD8(+) T cells are activated on encounter with Ag presented on dendritic cells and proliferate rapidly. To investigate the regulation of naive CD8(+) T cells proliferation, we adoptively transferred TCR-transgenic CD8(+) T cells into intact mice together with Ag-pulsed dendritic cells. Regardless of the number of cells initially transferred, the expansion of activated Ag-specific CD8(+) T cells was limited to a ceiling of effector cells. This limit was reached from a wide range of T cell doses, including a physiological number of precursor cells, and was not altered by changing the amount of Ag or APCs. The total Ag-specific response was composed of similar numbers of host and donor transgenic cells regardless of donor cell input, suggesting that these populations were independently regulated. Regulation of the transgenic donor cell population was TCR specific. We hypothesize that a clone-specific regulatory mechanism controls the extent of CD8(+) T cell responses to Ag.  相似文献   

5.
Intestinal autoimmune diseases are thought to be associated with a breakdown in tolerance, leading to mucosal lymphocyte activation perhaps as a result of encounter with bacterium-derived Ag. To study mucosal CD8(+) T cell activation, tolerance, and polarization of autoimmune reactivity to self-Ag, we developed a novel (Fabpl(4x at -132)-OVA) transgenic mouse model expressing a truncated form of OVA in intestinal epithelia of the terminal ileum and colon. We found that OVA-specific CD8(+) T cells were partially tolerant to intestinal epithelium-derived OVA, because oral infection with Listeria monocytogenes-encoding OVA did not elicit an endogenous OVA-specific MHC class I tetramer(+)CD8(+) T cell response and IFN-gamma-, IL-4-, and IL-5-secreting T cells were decreased in the Peyer's patches, mesenteric lymph nodes, and intestinal mucosa of transgenic mice. Adoptive transfer of OVA-specific CD8(+) (OT-I) T cells resulted in their preferential expansion in the Peyer's patches and mesenteric lymph nodes and subsequently in the epithelia and lamina propria but failed to cause mucosal inflammation. Thus, CFSE-labeled OT-I cells greatly proliferated in these tissues by 5 days posttransfer. Strikingly, OT-I cell-transferred Fabpl(4x at -132)-OVA transgenic mice underwent a transient weight loss and developed a CD8(+) T cell-mediated acute enterocolitis 5 days after oral L. monocytogenes-encoding OVA infection. These findings indicate that intestinal epithelium-derived "self-Ag" gains access to the mucosal immune system, leading to Ag-specific T cell activation and clonal deletion. However, when Ag is presented in the context of bacterial infection, the associated inflammatory signals drive Ag-specific CD8(+) T cells to mediate intestinal immunopathology.  相似文献   

6.
The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8(+) T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c(+) cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c(+) cells stimulate Ag-specific naive CD8(+) T cells locally in the CNS and may contribute to immune responses in the brain.  相似文献   

7.
The mechanisms underlying tolerance to noninherited maternal Ags (NIMA) are not fully understood. In this study, we designed a double-transgenic model in which all the offspring's CD8(+) T cells corresponded to a single clone recognizing the K(b) MHC class I protein. In contrast, the mother and the father of the offspring differed by the expression of a single Ag, K(b), that served as NIMA. We investigated the influence of NIMA exposure on the offspring thymic T cell selection during ontogeny and on its peripheral T cell response during adulthood. We observed that anti-K(b) thymocytes were exposed to NIMA and became activated during fetal life but were not deleted. Strikingly, adult mice exposed to NIMA accepted permanently K(b+) heart allografts despite the presence of normal levels of anti-K(b) TCR transgenic T cells. Transplant tolerance was associated with a lack of a proinflammatory alloreactive T cell response and an activation/expansion of T cells producing IL-4 and IL-10. In addition, we observed that tolerance to NIMA K(b) was abrogated via depletion of CD4(+) but not CD8(+) T cells and could be transferred to naive nonexposed mice via adoptive transfer of CD4(+)CD25(high) T cell expressing Foxp3 isolated from NIMA mice.  相似文献   

8.
Dendritic cells (DCs) are thought to be responsible for sensitization to inhaled Ag and induction of adaptive immunity in the lung. The characteristics of T cell activation in the lung were studied after transfer of Ag-pulsed bone marrow-derived DCs into the airways of naive mice. Cell division of Ag-specific T cells in vivo was followed in a carboxyfluorescein diacetate succinimidyl ester-labeled cohort of naive moth cytochrome c-reactive TCR transgenic T cells. Our adoptive transfer system was such that transferred DCs were the only cells expressing the MHC molecule required for presentation of cytochrome c to transgenic T cells. Ag-specific T cell activation and proliferation occurred rapidly in the draining lymph nodes of the lung, but not in nondraining lymph nodes or spleen. No bystander activation of non-Ag-specific T cells was induced. Division of Ag-specific T cells was accompanied by transient expression of CD69, while up-regulation of CD44 increased with each cell division. Divided cells had recirculated to nondraining lymph nodes and spleen by day 4 of the response. In vitro restimulation with specific Ag revealed that T cells were primed to proliferate more strongly and to produce higher amounts of cytokines per cell. These data are consistent with the notion that DCs in the lung are extremely efficient in selecting Ag-reactive T cells from a diverse repertoire. The response is initially localized in the mediastinal lymph nodes, but subsequently spreads systemically. This system should allow us to study the early events leading to sensitization to inhaled Ag.  相似文献   

9.
Activation of CD4(+) T cells by APCs occurs by multiple Ag recognition events including the exchange of costimulatory signals and cytokines. Additionally, the T cells acquire APC-derived surface molecules. Herein, we describe for the first time the transfer of human and murine T cell surface receptors to APCs after Ag-specific interaction. This transfer occurs in two qualitatively different phases. The first group of molecules (e.g., CD2) derived from the T cell surface was transferred rapidly after 2 h of interaction, was strongly bound on the DC surface (acid wash-resistant), was strictly dependent on dendritic cell-T cell contact, and transferred independently of T cell activation. The second group, including the CD3/TCR complex, CD27, and OX40, was of intracellular origin, transferred later after 10-16 h in a cell-cell contact-independent fashion, was noncovalently bound, and was strictly dependent on Ag-specific T cell activation. Functionally, murine dendritic cells that received TCR molecules from OVA-specific CD4(+) T cells after Ag-specific interaction were less efficient in priming naive CD4(+) T cells of the same specificity without losing their ability for CD8(+) T cell stimulation, indicating that the transferred TCR molecules mask the Ag-bearing MHC II molecules, thereby reducing their accessibility to following Ag-specific CD4(+) T cells. While the first group of transferred T cell surface molecules might facilitate the detachment of the CD4(+) T cell from the dendritic cell during the early scanning phases, the second group could play an important immunomodulatory role in intraclonal competition of T cells for APC access, making the physical presence of CD4(+) T cells unnecessary.  相似文献   

10.
Dynamics of T cell responses in HIV infection   总被引:14,自引:0,他引:14  
Cytotoxic CD8(+) T cells play a major role in the immune response against viruses. However, the dynamics of CD8(+) T cell responses during the course of a human infection are not well understood. Using tetrameric complexes in combination with a range of intracellular and extracellular markers, we present a detailed analysis of the changes in activation and differentiation undergone by Ag-specific CD8(+) T cells, in relation to Ag-specific CD4(+) T cell responses, in the context of a human infection: HIV-1. During primary HIV-1 infection, the initial population of HIV-specific CD8(+) T cells is highly activated and prone to apoptosis. The Ag-specific cells differentiate rapidly from naive to cells at a perforin low intermediate stage of differentiation, later forming a stable pool of resting cells as viral load decreases during chronic infection. These observations have significant implications for our understanding of T cell responses in human viral infections in general and indicate that the definition of effector and memory subsets in humans may need revision.  相似文献   

11.
NK cells express several families of receptors that play central roles in target cell recognition. These NK cell receptors are also expressed by certain memory phenotype CD8(+) T cells, and in some cases are up-regulated in T cells responding to viral infection. To determine how the profile of NK receptor expression changes in murine CD8(+) T cells as they respond to intracellular pathogens, we used class I tetramer reagents to directly examine Ag-specific T cells during lymphocytic choriomeningitis virus and Listeria monocytogenes infections. We found that the majority of pathogen-specific CD8(+) T cells initiated expression of the inhibitory CD94/NKG2A heterodimer, the KLRG1 receptor, and a novel murine NK cell marker (10D7); conversely, very few Ag-specific T cells expressed Ly49 family members. The up-regulation of these receptors was independent of IL-15 and persisted long after clearance of the pathogen. The expression of CD94/NKG2A was rapidly initiated in naive CD8(+) T cells responding to peptide Ags in vitro and on many of the naive T cells that proliferate when transferred into lymphopenic (Rag-1(-/-)) hosts. Thus, CD94/NKG2A expression is a common consequence of CD8(+) T cell activation. Binding of the CD94/NKG2A receptor by its ligand (Qa-1(b)) did not significantly inhibit CD8(+) T cell effector functions. However, expression of CD94 and NKG2A transgenes partially inhibited early events of T cell activation. These subtle effects suggest that CD94/NKG2A-mediated inhibition of T cells may be limited to particular circumstances or may synergize with other receptors that are similarly up-regulated.  相似文献   

12.
Cross-presentation of normal self and candidate tumor Ags by bone marrow (BM)-derived APCs that have not been activated has been demonstrated as a major mechanism contributing to acquisition of tolerance by mature T cells that first encounter an Ag in the periphery (cross-tolerance). Following adoptive transfer of naive TCR-transgenic CD8(+) T cells into a host expressing a transgenic Ag that is a potentially targetable tumor Ag in normal hepatocytes as a self-Ag, we found that the majority of Ag-specific CD8(+) T cells were deleted, with the remaining cells rendered anergic. Studies in BM chimeric mice and with purified cell populations demonstrated that these events were not dependent on cross-presentation by BM-derived APCs including Kupffer cells or liver sinusoidal endothelial cells, and apparently can occur entirely as a consequence of direct recognition of Ag endogenously processed and presented by hepatocytes. Direct recognition of Ag-expressing hepatocytes in vivo induced a proliferative response and up-regulation of activation markers in responding CD8(+) T cells, but proliferating cells did not accumulate, with most cells rapidly eliminated, and the persisting T cells lost the capacity to proliferate in response to repeated Ag stimulation. The results suggest that parenchymal tissues may retain the capacity to directly regulate in vivo responses to self-Ags processed and presented in the context of class I MHC molecules.  相似文献   

13.
Central memory CD8(+) T cells (T(CM)) are considered to be more efficient than effector ones (T(EM)) for mediating protective immunity. The molecular mechanism involved in the generation of these cells remains elusive. Because Bcl6 plays a role in the generation and maintenance of memory CD8(+) T cells, we further examined this role in the process in relation to T(CM) and T(EM) subsets. In this study, we show that T(CM) and T(EM) were functionally identified in CD62L(+) and CD62L(-) memory (CD44(+)Ly6C(+)) CD8(+) T cell subsets, respectively. Although T(CM) produced similar amounts of IFN-gamma and IL-2 to T(EM) after anti-CD3 stimulation, the cell proliferation capacity after stimulation and tissue distribution profiles of T(CM) differed from those of T(EM). Numbers of T(CM) were greatly reduced and elevated in spleens of Bcl6-deficient and lck-Bcl6 transgenic mice, respectively, and those of T(EM) were constant in nonlymphoid organs of these same mice. The majority of Ag-specific memory CD8(+) T cells in spleens of these mice 10 wk after immunization were T(CM), and the number correlated with Bcl6 expression in T cells. The proliferation of Ag-specific memory CD8(+) T cells upon secondary stimulation was dramatically up-regulated in lck-Bcl6 transgenic mice, and the adoptive transfer experiments with Ag-specific naive CD8(+) T cells demonstrated that some of the up-regulation was due to the intrinsic effect of Bcl6 in the T cells. Thus, Bcl6 is apparently a crucial factor for the generation and secondary expansion of T(CM).  相似文献   

14.
15.
Vaccines capable of eliciting long-term T cell immunity are required for combating many diseases. Live vectors can be unsafe whereas subunit vaccines often lack potency. We previously reported induction of CD8(+) T cells to Ag entrapped in archaeal glycerolipid vesicles (archaeosomes). In this study, we evaluated the priming, phenotype, and functionality of the CD8(+) T cells induced after immunization of mice with OVA-Methanobrevibacter smithii archaeosomes (MS-OVA). A single injection of MS-OVA evoked a profound primary response but the numbers of H-2K(b)OVA(257-264)-specific CD8(+) T cells declined by 14-21 days, and <1% of primarily central phenotype (CD44(high)CD62L(high)) cells persisted. A booster injection of MS-OVA at 3-11 wk promoted massive clonal expansion and a peak effector response of approximately 20% splenic/blood OVA(257-264)-specific CD8(+) T cells. Furthermore, contraction was protracted and the memory pool (IL-7Ralpha(high)) of approximately 5% included effector (CD44(high)CD62L(low)) and central (CD44(high)CD62L(high)) phenotype cells. Recall response was observed even at >300 days. CFSE-labeled naive OT-1 (OVA(257-264) TCR transgenic) cells transferred into MS-OVA-immunized recipients cycled profoundly (>90%) within the first week of immunization indicating potent Ag presentation. Moreover, approximately 25% cycling of Ag-specific cells was seen for >50 days, suggesting an Ag depot. In vivo, CD8(+) T cells evoked by MS-OVA killed >80% of specific targets, even at day 180. MS-OVA induced responses similar in magnitude to Listeria monocytogenes-OVA, a potent live vector. Furthermore, protective CD8(+) T cells were induced in TLR2-deficient mice, suggesting nonengagement of TLR2 by archaeal lipids. Thus, an archaeosome adjuvant vaccine represents an alternative to live vectors for inducing CD8(+) T cell memory.  相似文献   

16.
Viral FLIPs (vFLIPs) interfere with apoptosis signaling by death-domain-containing receptors in the TNFR superfamily (death receptors). In this study, we show that T cell-specific transgenic expression of MC159-vFLIP from the human Molluscum contagiosum virus blocks CD95-induced apoptosis in thymocytes and peripheral T cells, but also impairs postactivation survival of in vitro activated primary T cells despite normal early activation parameters. MC159 vFLIP impairs T cell development to a lesser extent than does Fas-associated death domain protein deficiency or another viral FLIP, E8. In the periphery, vFLIP expression leads to a specific deficit of functional memory CD8(+) T cells. After immunization with a protein Ag, Ag-specific CD8(+) T cells initially proliferate, but quickly disappear and fail to produce Ag-specific memory CD8(+) T cells. Viral FLIP transgenic mice exhibit impaired CD8(+) T cell responses to lymphocytic choriomeningitis virus and Trypanosoma cruzi infections, and a specific defect in CD8(+) T cell recall responses to influenza virus was seen. These results suggest that vFLIP expression in T cells blocks signals necessary for the sustained survival of CD8(+) T cells and the generation of CD8(+) T cell memory. Through this mechanism, vFLIP proteins expressed by T cell tropic viruses may impair the CD8(+) T cell immune responses directed against them.  相似文献   

17.
The capacity of airway eosinophils, potentially pertinent to allergic diseases of the upper and lower airways, to function as professional APCs, those specifically able to elicit responses from unprimed, Ag-naive CD4(+) T cells has been uncertain. We investigated whether airway eosinophils are capable of initiating naive T cell responses in vivo. Eosinophils, isolated free of other APCs from the spleens of IL-5 transgenic mice, following culture with GM-CSF expressed MHC class II and the costimulatory proteins, CD40, CD80, and CD86. Eosinophils, incubated with OVA Ag in vitro, were instilled intratracheally into wild-type recipient mice that adoptively received i.v. infusions of OVA Ag-specific CD4(+) T cells from OVA TCR transgenic mice. OVA-exposed eosinophils elicited activation (CD69 expression), proliferation (BrdU incorporation), and IL-4, but not IFN-gamma, cytokine production by OVA-specific CD4(+) T cells in paratracheal lymph nodes (LN). Exposure of eosinophils to lysosomotropic NH(4)Cl, which inhibits Ag processing, blocked each of these eosinophil-mediated activation responses of CD4(+) T cells. By three-color fluorescence microscopy, OVA Ag-loaded eosinophil APCs were physically interacting with naive OVA-specific CD4(+) T cells in paratracheal LN after eosinophil airway instillation. Thus, recruited luminal airway eosinophils are distinct allergic "inflammatory" professional APCs able to activate primary CD4(+) T cell responses in regional LNs.  相似文献   

18.
Naive Ag-specific CD8(+) T cells expand, contract, and become memory cells after infection and/or vaccination. Memory CD8(+) T cells provide faster, more effective secondary responses against repeated exposure to the same pathogen. Using an adoptive transfer system with low numbers of trackable nontransgenic memory CD8(+) T cells, we showed that secondary responses can be comprised of both primary (naive) and secondary (memory) CD8(+) T cells after bacterial (Listeria monocytogenes) and/or viral (lymphocytic choriomeningitis virus) infections. The level of memory CD8(+) T cells present at the time of infection inversely correlated with the magnitude of primary CD8(+) T cell responses against the same epitope but directly correlated with the level of protection against infection. However, similar numbers of Ag-specific CD8(+) T cells were found 8 days postinfection no matter how many memory cells were present at the time of infection. Rapid contraction of primary CD8(+) T cell responses was not influenced by the presence of memory CD8(+) T cells. However, contraction of secondary CD8(+) T cell responses was markedly prolonged compared with primary responses in the same host mice. This situation occurred in response to lymphocytic choriomeningitis virus or L. monocytogenes infection and for CD8(+) T cell responses against multiple epitopes. The delayed contraction of secondary CD8(+) T cells was also observed after immunization with peptide-coated dendritic cells. Together, the results show that the level of memory CD8(+) T cells influences protective immunity and activation of naive precursors specific for the same epitope but has little impact on the magnitude or program of the CD8(+) T cell response.  相似文献   

19.
The initial cellular events and interactions that occur following DNA immunization are likely to be key to determining the character and magnitude of the resulting immune response, and as such, a better understanding of these events could ultimately lead to the design of more effective pathogen-appropriate DNA vaccines. Therefore, we have used a variety of sensitive cell-based techniques to study the induction of adaptive immunity in vivo. We examined the efficacy of induction of Ag-specific CD4(+) and CD8(+) T cell responses in vivo by the adoptive transfer of fluorescently labeled Ag-specific TCR transgenic T cells and have demonstrated how such approaches can be used to study the effect of simple DNA construct manipulations on immunological priming. OVA-specific CD8(+) and CD4(+) T cells were activated and divided in vivo following immunization with DNA constructs that targeted OVA expression to different subcellular locations; however, the kinetics and degree of cell proliferation were dependent on the cellular location of the expressed protein. DNA vectors encoding cell-associated OVA resulted in greater CD8(+) T cell division compared with other forms of OVA. In contrast, soluble secreted OVA targeted to the classical secretory pathway enhanced division of CD4(+) T cells. Furthermore, the inclusion of mammalian introns to enhance protein expression increased the ability of poorly immunogenic forms of Ag to activate naive T cells, indicating that not only the location, but also the amount of Ag expression, is important for efficient T cell priming following DNA injection.  相似文献   

20.
Gene expression in antigen-specific CD8+ T cells during viral infection   总被引:3,自引:0,他引:3  
Following infection with intracellular pathogens, Ag-specific CD8(+) T cells become activated and begin to proliferate. As these cells become activated, they elaborate effector functions including cytokine production and cytolysis. After the infection has been cleared, the immune system returns to homeostasis through apoptosis of the majority of the Ag-specific effector cells. The surviving memory cells can persist for extended periods and provide protection against reinfection. Little is known about the changes in gene expression as Ag-specific cells progress through these stages of development, i.e., naive to effector to memory. Using recombinant MHC class I tetramers, we isolated Ag-specific CD8(+) T cells from mice infected with lymphocytic choriomeningitis virus at various time points and performed semiquantitative RT-PCR. We examined expression of: 1) genes involved in cell cycle control, 2) effector and regulatory functions, and 3) susceptibility to apoptosis. We found that Ag-specific CD8(+) memory T cells contain high steady-state levels of Bcl-2, BAX:, IFN-gamma, and lung Kruppel-like factor (LKLF), and decreased levels of p21 and p27 mRNA. Moreover, the pattern of gene expression between naive and memory cells is distinct and suggests that these two cell types control susceptibility to apoptosis through different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号