首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of elongation factor 1alpha from the archaeon Sulfolobus solfataricus in complex with GDP (SsEF-1alpha.GDP) at 1.8 A resolution is reported. As already known for the eubacterial elongation factor Tu, the SsEF-1alpha.GDP structure consists of three different structural domains. Surprisingly, the analysis of the GDP-binding site reveals that the nucleotide- protein interactions are not mediated by Mg(2+). Furthermore, the residues that usually co-ordinate Mg(2+) through water molecules in the GTP-binding proteins, though conserved in SsEF-1alpha, are located quite far from the binding site. [(3)H]GDP binding experiments confirm that Mg(2+) has only a marginal effect on the nucleotide exchange reaction of SsEF-1alpha, although essential to GTPase activity elicited by SsEF-1alpha. Finally, structural comparisons of SsEF- 1alpha.GDP with yeast EF-1alpha in complex with the nucleotide exchange factor EF-1beta shows that a dramatic rearrangement of the overall structure of EF-1alpha occurs during the nucleotide exchange.  相似文献   

2.
Recent studies have shown that elongation factors extracted from archaea/eukarya and from eubacteria exhibit different structural and functional properties. Along this line, it has been demonstrated that, in contrast to EF-Tu, Sulfolobus solfataricus EF-1alpha in complex with GDP (SsEF-1alpha.GDP) does not bind Mg(2+), when the ion is present in the crystallization medium at moderate concentration (5 mM). To further investigate the role that magnesium plays in the exchange process of EF-1alpha and to check the ability of SsEF-1alpha.GDP to bind the ion, we have determined the crystal structure of SsEF-1alpha.GDP in the presence of a nonphysiological concentration (100 mM) of Mg(2+). The analysis of the coordination of Mg(2+) unveils the structural bases for the marginal role played by the ion in the nucleotide exchange process. Furthermore, nucleotide exchange experiments carried out on a truncated form of SsEF-1alpha, consisting only of the nucleotide binding domain, demonstrate that the low affinity of SsEF-1alpha.GDP for Mg(2+) is due to the local architecture of the active site and does not depend on the presence of the other two domains. Finally, considering the available structures of EF-1alpha, a detailed mechanism for the nucleotide exchange process has been traced. Notably, this mechanism involves residues such as His14, Arg95, Gln131, and Glu134, which are strictly conserved in all archaea and eukarya EF-1alpha sequences hitherto reported.  相似文献   

3.
A recombinant chimeric elongation factor containing the region of EF-1 alpha from Sulfolobus solfataricus harboring the site for GDP and GTP binding and GTP hydrolysis (SsG) and domains M and C of Escherichia coli EF-Tu (EcMC) was studied. SsG-EcMC did not sustain poly(Phe) synthesis in either S. solfataricus or E. coli assay system. This was probably due to the inability of the chimera to interact with aa-tRNA. The three-dimensional modeling of SsG-EcMC indicated only small structural differences compared to the Thermus aquaticus EF-Tu in the ternary complex with aa-tRNA and GppNHp, which did not account for the observed inability to interact with aa-tRNA. The addition of the nucleotide exchange factor SsEF-1 beta was not required for poly(Phe) synthesis since the chimera was already able to exchange [(3)H]GDP for GTP at very high rate even at 0 degrees C. Compared to that of SsEF-1 alpha, the affinity of the chimera for guanine nucleotides was increased and the k(cat) of the intrinsic GTPase was 2-fold higher. The heat stability of SsG-EcMC was 3 and 13 degrees C lower than that displayed by SsG and SsEF-1alpha, respectively, but 30 degrees C higher than that of EcEF-Tu. This pattern remained almost the same if the melting curves of the proteins being investigated were considered instead. The chimeric elongation factor was more thermophilic than SsG and SsEF-1 alpha up to 70 degrees C; at higher temperatures, inactivation occurred.  相似文献   

4.
An equilibrium isotope exchange technique was used to measure in an Artemia system the catalytic influence of elongation factor (EF) 1 beta gamma on the dissociation of GDP from the complex of elongation factor 1 alpha.[3H] GDP in the presence of an excess of free GDP. The kinetic data demonstrate that, in analogy to procaryotes, dissociation of GDP occurs via the formation of a transient ternary complex of EF-1 alpha.GDP.EF-1 beta gamma. The rate constants for the dissociation of GDP from EF-1 alpha.GDP and from the ternary complex EF-1 alpha.GDP.EF-1 beta gamma were found to be 0.7 x 10(-3) and greater than or equal to 0.7 s-1, respectively. The equilibrium association constants of GDP to EF-1 alpha.EF-1 beta gamma and of EF-1 beta gamma to EF-1 alpha.GDP were found to be 2.3 x 10(5) and 4.2 x 10(5) M-1, respectively. Judged from the known elongation rate in vivo and kinetic constants of nucleotide exchange, it was estimated that the recycling of EF-1 alpha may be a rate-controlling step in eucaryotic translation. As a model for GTP exchange, the formation of the ternary EF-1 alpha.guanylyl (beta gamma-methylene)diphosphonate.EF-1 beta gamma complex was also studied. It was observed that both an increase of the level of aminoacyl-tRNA and of temperature favored the dissociation of this complex, thereby enabling EF-1 beta gamma to recycle as a catalyst. This behavior would explain the frequent occurrence of a heavy form of elongation factor 1 in extracts of the eucaryotic cell.  相似文献   

5.
Elongation factor 1alpha from the hyperthermophilic archaeon Sulfolobus solfataricus (SsEF-1alpha) carries the aminoacyl tRNA to the ribosome; it binds GDP or GTP, and it is also endowed with an intrinsic GTPase activity that is triggered in vitro by NaCl at molar concentrations [Masullo, M., De Vendittis, E., and Bocchini, V. (1994) J. Biol. Chem. 269, 20376-20379]. The structural properties of SsEF-1alpha were investigated by Fourier transform infrared spectroscopy. The estimation of the secondary structure of the SsEF-1alpha*GDP complex, made by curve fitting of the amide I' band or by factor analysis of the amide I band, indicated a content of 34-36% alpha-helix, 35-40% beta-sheet, 14-19% turn, and 7% unordered structure. The substitution of the GDP bound with the slowly hydrolyzable GTP analogue Gpp(NH)p induced a slight increase in the alpha-helix and beta-sheet content. On the other hand, the alpha-helix content of the SsEF-1alpha*GDP complex increased upon addition of salts, and the highest effect was produced by 5 M NaCl. The thermal stability of the SsEF-1alpha*GDP complex was significantly reduced when the GDP was replaced with Gpp(NH)p or in the presence of NaBr or NH4Cl, whereas a lower destabilizing effect was provoked by NaCl and KCl. Therefore, the extent of the destabilizing effect of salts depended on the nature of both the cation and the anion. The data suggested that the sodium ion was responsible for the induction of the GTPase activity, whereas the anion modulated the enzymatic activity through destabilization of particular regions of SsEF-1alpha. Finally, the infrared data suggested that, in particular region(s) of the polypeptide chain, the SsEF-1alpha*Gpp(NH)p complex possesses structural conformations which are different from those present in the SsEF-1alpha*GDP complex.  相似文献   

6.
The stability against chemical denaturants of the elongation factor EF-1alpha (SsEF-1alpha), a protein isolated from the hyperthermophilic archaeon Sulfolobus solfataricus has been characterized in detail. Indeed, the atypical shape of the protein structure and the unusual living conditions of the host organism prompted us to analyze the effect of urea and guanidine hydrochloride (GuHCl) on the GDP complex of the enzyme (SsEF-1alpha x GDP) by fluorescence and circular dichroism. These studies were also extended to the nucleotide-free form of the protein (nfSsEF-1alpha). Interestingly, the experiments show that the denaturation curves of both SsEF-1alpha forms present a single inflection point, which is indicative of a cooperative unfolding process with no intermediate species. Moreover, the chemically induced unfolding process of both SsEF-1alpha x GDP and nfSsEF-1alpha is fully reversible. Both SsEF-1alpha forms exhibit remarkable stability against urea, but they do not display a strong resistance to the denaturing action of GuHCl. These findings suggest that electrostatic interactions significantly contribute to SsEF-1alpha stability.  相似文献   

7.
The guanine nucleotide exchange factor, elongation factor 1 beta gamma (EF-1 beta gamma) has been purified from Artemia cysts using an improved method. The protein consists of two distinct polypeptides with relative molecular masses of 26,000 (EF-1 beta) and 46,000 (EF-1 gamma). A nucleoside diphosphate phosphotransferase activity often found in EF-1 beta gamma preparations has been completely separated from the actual guanine nucleotide exchange stimulatory activity of EF-1 beta gamma, thus indicating that nucleotide diphosphate phosphotransferase is not an intrinsic property of EF-1 beta. Both EF-1 beta gamma and EF-1 beta have been shown to stimulate the following three reactions to a comparable degree: (a) exchange of GDP bound to EF-1 alpha with exogenous GDP; (b) EF-1 alpha-dependent binding of Phe-tRNA to ribosomes; (c) poly(U)-dependent poly(phenylalanine) synthesis. However, a significantly higher nucleotide exchange rate was observed in the presence of EF-1 beta gamma compared to EF-1 beta alone. Concerning elongation factor 1 gamma (EF-1 gamma) the following observations were made. In contrast to EF-1 beta, pure EF-1 gamma is rather insoluble in aqueous buffers, but the tendency to precipitate can be partially suppressed by the addition of detergents. In particular, EF-1 gamma partitions solely into the detergent phase of Triton X-114 solutions. EF-1 gamma is also more susceptible to spontaneous, specific fragmentation. It is remarkably that about 5% of the cellular pool of EF-1 beta gamma was found to be present in membrane fractions, under conditions where no EF-1 alpha was detectable in these fractions. Furthermore it was noted that EF-1 beta gamma copurified strongly with tubulin on DEAE-cellulose. Moreover, it was observed that from a mixture of EF-1 beta gamma and tubulin, EF-1 gamma coprecipitates with tubulin using a non-denaturating immunoprecipitation technique. These findings suggest that EF-1 gamma has a hydrophobic domain and interacts with membrane and cytoskeleton structures in the cell.  相似文献   

8.
Valine 114 in the D(109)AAILVVA sequence of elongation factor 1alpha from the archaeon Sulfolobus solfataricus (SsEF-1alpha) was substituted with an acidic (V114E), basic (V114K), or cavity-forming (V114A) residue, and the effects on the biochemical properties of the factor were investigated. This sequence is well-conserved among most of eukaryal and eubacterial counterparts, and in the three-dimensional structure of SsEF-1alpha, V114 is located in a hydrophobic pocket near the first GDP-binding consensus sequence G(13)XXXXGK[T,S] [Vitagliano, L., Masullo, M., Sica, F., Zagari, A., and Bocchini, V. (2001) EMBO J. 20, 5305-5311]. These mutants displayed functions absent in the wild-type factor. In fact, although they exhibited a rate in poly(Phe) incorporation almost identical to that of SsEF-1alpha, V114K and V114A exhibited an affinity for GDP and GTP higher and a capability to bind heterologous aa-tRNA stronger than that elicited by SsEF-1alpha but similar to that of eubacterial EF-Tu. V114E instead displayed not only a weaker binding capability for aa-tRNA but also a lower affinity for GDP. The intrinsic GTPase activity of V114E was drastically reduced compared to those of SsEF-1alpha, V114K, and V114A. Interestingly, the decreased intrinsic GTPase activity of V114E was partially restored by kirromycin, an effect already observed for the G13A mutant of SsEF-1alpha [Masullo, M., Cantiello, P., de Paola, B., Catanzano, F., Arcari, P., and Bocchini, V. (2002) Biochemistry 41, 628-633]. Finally, the V114A substitution showed only a marginal effect on both the thermostability and thermophilicity of SsEF-1alpha, whereas V114K and V114E replacements strongly destabilized the molecule.  相似文献   

9.
We have isolated from the high salt wash of rabbit reticulocyte ribosomes two forms of the polypeptide chain initiation factor 2 (eIF-2) which differ with respect to their beta-subunit, GDP content, and sensitivity to Mg2+ in ternary (eIF-2 X GTP X Met-tRNAf) and binary (eIF-2 X GDP) complex formation. The form of eIF-2 eluting first from a cation exchange (Mono S, Pharmacia) column has a beta-subunit of lower molecular weight (eIF-2(beta L] and a more acidic pI value than the form eluting at a higher salt concentration (eIF-2(beta H]. These two forms of eIF-2 beta-polypeptides are also detected in reticulocyte lysates when the proteins are resolved by two-dimensional isoelectric focusing-dodecyl sulfate polyacrylamide gel electrophoresis followed by immunoblotting. The peptide mapping of the isolated beta-subunits after limited proteolysis by papain, pancreatic protease, alpha-chymotrypsin, or Staphylococcus aureus V8 protease further demonstrates that the two forms of beta-subunits are not the product of a non-specific proteolytic action that occurred during the purification procedure, but rather reflects the existence in vivo of both forms of eIF-2. The GDP content of eIF-2(beta L) and eIF-2(beta H) is approximately 0.85 and 0.22 mol of GDP/mol of eIF-2, respectively. The KD for GDP of eIF-2(beta L) was lower (2.2 X 10(-9) M) than that of eIF-2(beta H) (6.0 X 10(-8) M). In the presence of 1 mM Mg2+, the activities of eIF-2(beta L) and eIF-2(beta H) in forming a binary and a ternary complex are inhibited 90 and 25%, respectively. The extent of Mg2+ inhibition and its reversal by the guanine nucleotide exchange factor is directly proportional to the amount of GDP bound to eIF-2. No inhibition by Mg2+ is observed when eIF-2-bound GDP is removed by alkaline phosphatase. In the presence of the guanine nucleotide exchange factor, both forms of eIF-2 are equally active in ternary complex formation, and the complex formed is quantitatively transferred to 40 S ribosomal subunits.  相似文献   

10.
Arf1 is a small G protein involved in vesicular trafficking, and although it is only distantly related to Ras, it adopts a similar three-dimensional structure. In the present work, we study Arf1 bound to GDP and GTP and its interactions with one of its guanosine nucleotide exchange factors, ARNO-Sec7. The (31)P NMR spectra of Arf1.GDP.Mg(2+) and Arf1.GTP.Mg(2+) share the general features typical for all small G proteins studied so far. Especially, the beta-phosphate resonances of the bound nucleotide are shifted strongly downfield compared with the resonance positions of the free magnesium complexes of GDP and GTP. However, no evidence for an equilibrium between two conformational states of Arf1.GDP.Mg(2+) or Arf1.GTP.Mg(2+) could be observed as it was described earlier for Ras and Ran. Glu(156) of ARNO-Sec7 has been suggested to play as "glutamic acid finger" an important role in the nucleotide exchange mechanism. In the millimolar concentration range used in the NMR experiments, wild type ARNO-Sec7 and ARNO-Sec7(E156D) do weakly interact with Arf1.GDP.Mg(2+) but do not form a strong complex with magnesium-free Arf1.GDP. Only wild type ARNO-Sec7 competes weakly with GDP on Arf1.GDP.Mg(2+) and leads to a release of GDP when added to the solution. The catalytically inactive mutants ARNO-Sec7(E156A) and ARNO-Sec7(E156K) induce a release of magnesium from Arf1.GDP.Mg(2+) but do not promote GDP release. In addition, ARNO-Sec7 does not interact or only very weakly interacts with the GTP-bound form of Arf1, opposite to the observation made earlier for Ran, where the nucleotide exchange factor RCC1 forms a complex with Ran.GTP.Mg(2+) and is able to displace the bound GTP.  相似文献   

11.
A study of the kinetic mechanism of elongation factor Ts   总被引:5,自引:0,他引:5  
Elongation factor Ts (EF-Ts) catalyzes the reaction EF-Tu X GDP + nucleotide diphosphate (NDP) reversible EF-Tu X NDP + GDP where NDP is GDP, IDP, GTP, or GMP X PCP. The EF-Ts-catalyzed exchange rates were measured at a series of concentrations of EF-Tu X [3H] GDP and free nucleotide. Plotting the rate data according to the Hanes method produced a series of lines intersecting on the ordinate, a characteristic of substituted enzyme mechanisms. GDP is a competitive inhibitor of IDP exchange, a result predicted for the substituted enzyme mechanism but inconsistent with ternary complex mechanisms that involve an intermediate complex containing EF-Ts and both substrates. The exchange of both GTP and the GTP analog GMP X PCP also follow the substituted enzyme mechanism. The maximal rates of exchange of GDP and GTP are the same, which indicates that the rates of dissociation of EF-Ts from EF-Tu X GDP and EF-Tu X GTP are the same. The steady-state maximal exchange rate is slower by a factor of 20 than the previously reported rate of dissociation of GDP from EF-Ts X EF-Tu. This is interpreted to mean that the rate-determining step in the exchange reaction is the dissociation of EF-Ts from EF-Tu X GDP.  相似文献   

12.
The elongation factors (EF-Tu/EF-1 alpha) are universal proteins, involved in protein biosynthesis. A detailed characterization of the stability against temperature of SsEF-1 alpha, a three-domain protein isolated from the hyperthermophilic archaeon Sulfolobus solfataricus is presented. Thermal denaturation of both the GDP-bound (SsEF-1 alpha*.GDP) and the ligand-free (nfSsEF-1 alpha) forms was investigated by means of circular dichroism and fluorescence measurements, over the 4.0-7.5 pH interval. Data indicate that the unfolding process is cooperative with no intermediate species and that the few inter-domain contacts identified in the crystal structure of SsEF-1 alpha play a role also at high temperatures. Finally, it is shown that the enzyme exhibits two different interchangeable thermally denatured states, depending on pH.  相似文献   

13.
A major site of regulation of polypeptide chain initiation is the binding of Met-tRNA to 40 S ribosomal subunits which is mediated by eukaryotic initiation factor 2 (eIF-2). The formation of ternary complex, eIF-2.GTP.Met-tRNA, is potently inhibited by GDP. Measurement of the parameters for guanine nucleotide binding to eIF-2 is critical to understanding the control of protein synthesis by fluctuations in cellular energy levels. We have compared the dissociation constants (Kd) of eIF-2.GDP and eIF-2.GTP and find that GDP has a 400-fold higher affinity for GDP than GTP. The Kd for GDP is almost an order of magnitude less than has been reported previously. The difference between the Kd values for the two nucleotides is the result of a faster rate constant for GTP release, the rate constants for binding being approximately equal. This combination of rate constants and low levels of contaminating GDP in preparations of GTP can explain the apparently unstable nature of eIF-2.GTP observed by others. Mg2+ stabilizes binary complexes slowing the rates of release of nucleotide from both eIF-2.GDP and eIF-2.GTP. The competition between GTP and GDP for binding to eIF-2.guanine nucleotide exchange factor complex has been measured. A 10-fold higher GTP concentration than GDP is required to reduce [32P] GDP binding to eIF-2.guanine nucleotide exchange factor complex by 50%. The relevance of this competition to the regulation of protein synthesis by energy levels is discussed.  相似文献   

14.
Guanosine tetra-phosphate (ppGpp), also known as "magic spot I", is a key molecule in the stringent control of most eubacteria and some eukarya. Here, we show that ppGpp affects the functional and molecular properties of the archaeal elongation factor 1α from Sulfolobus solfataricus (SsEF-1α). Indeed, ppGpp inhibited archaeal protein synthesis in vitro, even though the concentration required to get inhibition was higher than that required for the eubacterial and eukaryal systems. Regarding the partial reactions catalysed by SsEF-1α the effect produced by ppGpp on the affinity for aa-tRNA was lower than that measured in the presence of GTP but higher than that for GDP. Magic spot I was also able to bind SsEF-1α with an intermediate affinity in comparison to that displayed by GDP and GTP. Furthermore, ppGpp inhibited the intrinsic GTPase of SsEF-1α with a competitive behaviour. Finally, the binding of ppGpp to SsEF-1α rendered the elongation factor more resistant to heat treatment and the analysis of the molecular model of the complex between SsEF-1α and ppGpp suggests that this stabilisation arises from the charge optimisation on the surface of the protein.  相似文献   

15.
In the preceding papers, we showed that one of the two complementar factors of polypeptide chain elongation factor 1 (EF-1) from pig liver, EF-1alpha, functionally corresponds to bacterial EF-Tu (Nagata, S., Iwasaki, K., and Kaziro, Y. (1976) Arch. Biochem. Biophys. 172, 168), while the other, EF-1betagamma, as well as one of its subunits, EF-1beta, corresponds to bacterial EF-Ts (Motoyoshi, K. and Iwasaki, K. (1977) J. Biochem. 82, 703). Therefore, the interaction between EF-1alpha and EF-1 betagamma or EF-1beta was was examined and the following results were obtained. i) EF-1betagamma catalytically promoted the exchange of [14C]GDP bound to EF-1alpha with exogenous [3H]GDP. ii). In the absence of the exogenous guanine nucleotide, EF-1betagamma as well as EF-1beta could displace GDP bound to EF-1alpha to form an EF-1alpha.EF-1betagamma as well as an EF-1alpha.EF-1beta complex. iii) The occurrence of EF-1alpha.EF-1betagamma and EF-1alpha.EF-1beta complexes was demonstrated by gel filtration on Sephadex G-150. These results strongly indicate that the mechanism of the action of EF-1betagamma or EF-1beta in converting EF-1alpha.GDP into EF-1alpha.GTP is analogous to bacterial EF-Ts, and the reaction is accomplished by the following reactions; EF-1alpha.GDP + EF-1betagamma (or EF-1beta) in equilibrium EF-1alpha.EF-1betagamma (or EF-1beta) + GDP; EF-1alpha.EF-1beta (or EF-1beta) + GTP IN EQUILIBRIUM EF-1alpha.GTP + EF-1betagamma (or EF-1beta).  相似文献   

16.
The archaeal Sulfolobus solfataricus elongation factor 1alpha (SsEF-1alpha) bound to GTP or to its analogue guanyl-5'-yl imido diphosphate [Gpp(NH)p] formed a ternary complex with either Escherichia coli Val-tRNAVal or Saccharomyces cerevisiae Phe-tRNAPhe as demonstrated by gel-shift and gel-filtration experiments. Evidence of such an interaction also came from the observation that SsEF-1alphaz.rad;Gpp(NH)p was able to display a protective effect against either the spontaneous deacylation or the digestion of aminoacyl-tRNA by RNase A. Protection against the deacylation of aminoacyl-tRNA allowed evaluatation of the affinity of SsEF-1alphaz. rad;Gpp(NH)p for both aminoacyl-tRNAs used. The K'd values of the ternary complex containing S. cerevisiae Phe-tRNAPhe or E. coli Val-tRNAVal were 0.3 microM and 4.4 microM, respectively. In both cases, the affinity of SsEF-1alphaz.rad;Gpp(NH)p for aminoacyl-tRNA was three orders of magnitude lower than that of the homologous eubacterial ternary complexes, but comparable with the affinity shown by the ternary complex involving eukaryal EF-1alpha [Negrutskii, B.S. & El'skaya, A.V. (1998) Prog. Nucleic Acids Res. 60, 47-77]. As already observed with eukaryal EF-1alpha, SsEF-1alpha in its GDP-bound form was also able to protect the ester bond of aminoacyl-tRNA, even though with a 10-fold lower efficiency compared with SsEF-1alphaz.rad;Gpp(NH)p. The overall results indicated that the archaeal elongation factor 1alpha shares several properties with eukaryal EF-1alpha but not with eubacterial EF-Tu.  相似文献   

17.
The activation of heterotrimeric G proteins is accomplished primarily by the guanine nucleotide exchange activity of ligand-bound G protein-coupled receptors. The existence of nonreceptor guanine nucleotide exchange factors for G proteins has also been postulated. Yeast two-hybrid screens with Galpha(o) and Galpha(s) as baits were performed to identify binding partners of these proteins. Two mammalian homologs of the Caenorhabditis elegans protein Ric-8 were identified in these screens: Ric-8A (Ric-8/synembryn) and Ric-8B. Purification and biochemical characterization of recombinant Ric-8A revealed that it is a potent guanine nucleotide exchange factor for a subset of Galpha proteins including Galpha(q), Galpha(i1), and Galpha(o), but not Galpha(s). The mechanism of Ric-8A-mediated guanine nucleotide exchange was elucidated. Ric-8A interacts with GDP-bound Galpha proteins, stimulates release of GDP, and forms a stable nucleotide-free transition state complex with the Galpha protein; this complex dissociates upon binding of GTP to Galpha.  相似文献   

18.
Elongation factor (EF)-1 beta, a 26 kDa protein, is the eukaryotic equivalent of bacterial EF-Ts, the nucleotide exchange factor in protein synthesis. EF-1 beta catalyzes the exchange of guanine nucleotides bound to EF-1 alpha; the latter protein is the eukaryotic equivalent of bacterial EF-Tu. Limited proteolytic cleavage studies on EF-1 beta lead to the following picture: the protein is composed of two domains, an aminoterminal and a carboxyterminal domain, connected to each other by a stretch of hydrophilic, charged amino acids situated in the middle of the molecule. The carboxyterminal domain supplies the catalytic site for the nucleotide exchange reaction, whereas the aminoterminal domain interacts with EF-1 gamma, the third component of elongation factor 1. The regulatory, serine phosphate residue, Ser-89, localized in the hydrophilic stretch of EF-1 beta, does not appear to be necessary for the basic exchange reaction. The fourth component of the high molecular weight elongation factor complex (EF-1H), named EF-1 delta or 28 K protein, is homologous to EF-1 beta and contains regions very similar to the carboxyterminal part. EF-1 delta was found to be active in the nucleotide exchange reaction.  相似文献   

19.
A factor has been isolated from wheat germ that enhances the ability of initiation factor 2 (eIF-2) to form a ternary complex with GTP and Met-tRNAf and enhances the binding of Met-tRNAf to 40 s ribosomal subunits. This factor, designated Co-eIF2 beta, is a monomeric protein with a molecular weight of approximately 83,000. Wheat germ eIF-2 forms a stable binary complex with GDP but not with GTP. Co-eIF-2 beta enhances the formation of an eIF-2 . GDP complex, but does not enable eIF-2 to form a stable complex with GTP.  相似文献   

20.
Interactions of eukaryotic 5-dimethylaminonaphthalene-1-sulfonyl-initiation factor 2 (eIF-2) from rabbit reticulocytes and the guanine nucleotide exchange factor ( GEF ), Met-tRNAf, GTP, and GDP were monitored by changes in fluorescence anisotropy and radioactive filtration assays. At 1 mM Mg2+, radioactive filtration assays demonstrate that GEF is necessary for nucleotide exchange. We did not observe a GDP dependence in the association reaction of eIF-2 X GEF for GDP concentrations from 0.01 to 20 microM. This is in disagreement with the model: eIF-2 X GDP + GEF in equilibrium eIF-2 X GEF + GDP. The addition of GTP caused a decrease in fluorescence anisotropy which is interpreted as a dissociation of eIF-2 X GEF . We propose an asymmetrical model of ternary complex (eIF-2 X GTP X Met-tRNAf) formation where 1) GDP does not displace GEF and 2) GTP replaces GEF and presumably GDP. For reticulocyte eIF-2, phosphorylation of the alpha subunit greatly inhibits protein synthesis. This inhibition derives neither from failure of GEF to bind to eIF-2(alpha P) nor from greatly enhanced binding of GEF . The inhibition results from the requirement of very high levels of GTP (100 microM) to dissociate the eIF-2(alpha P) X GEF complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号