首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured production of reactive oxygen species by intact mitochondria from rat skeletal muscle, heart, and liver under various experimental conditions. By using different substrates and inhibitors, we determined the sites of production (which complexes in the electron transport chain produced superoxide). By measuring hydrogen peroxide production in the absence and presence of exogenous superoxide dismutase, we established the topology of superoxide production (on which side of the mitochondrial inner membrane superoxide was produced). Mitochondria did not release measurable amounts of superoxide or hydrogen peroxide when respiring on complex I or complex II substrates. Mitochondria from skeletal muscle or heart generated significant amounts of superoxide from complex I when respiring on palmitoyl carnitine. They produced superoxide at considerable rates in the presence of various inhibitors of the electron transport chain. Complex I (and perhaps the fatty acid oxidation electron transfer flavoprotein and its oxidoreductase) released superoxide on the matrix side of the inner membrane, whereas center o of complex III released superoxide on the cytoplasmic side. These results do not support the idea that mitochondria produce considerable amounts of reactive oxygen species under physiological conditions. Our upper estimate of the proportion of electron flow giving rise to hydrogen peroxide with palmitoyl carnitine as substrate (0.15%) is more than an order of magnitude lower than commonly cited values. We observed no difference in the rate of hydrogen peroxide production between rat and pigeon heart mitochondria respiring on complex I substrates. However, when complex I was fully reduced using rotenone, rat mitochondria released significantly more hydrogen peroxide than pigeon mitochondria. This difference was solely due to an elevated concentration of complex I in rat compared with pigeon heart mitochondria.  相似文献   

2.
Neither the route of electron transport nor the sites or mechanism of superoxide production in mitochondrial complex I has been established. We examined the rates of superoxide generation (measured as hydrogen peroxide production) by rat skeletal muscle mitochondria under a variety of conditions. The rate of superoxide production by complex I during NADH-linked forward electron transport was less than 10% of that during succinate-linked reverse electron transport even when complex I was fully reduced by pyruvate plus malate in the presence of the complex III inhibitor, stigmatellin. This asymmetry was not explained by differences in protonmotive force or its components. However, when inhibitors of the quinone-binding site of complex I were added in the presence of ATP to generate a pH gradient, there was a rapid rate of superoxide production by forward electron transport that was as great as the rate seen with reverse electron transport at the same pH gradient. These observations suggest that quinone-binding site inhibitors can make complex I adopt the highly radical-producing state that occurs during reverse electron transport. Despite complete inhibition of NADH: ubiquinone oxidoreductase activity in each case, different classes of quinone-binding site inhibitor (rotenone, piericidin, and high concentrations of myxothiazol) gave different rates of superoxide production during forward electron transport (the rate with myxothiazol was twice that with rotenone) suggesting that the site of rapid superoxide generation by complex I is in the region of the ubisemiquinone-binding sites and not upstream at the flavin or low potential FeS centers.  相似文献   

3.
Increased production of reactive oxygen species (ROS) by mitochondria is involved in oxidative damage to the organelle and in committing cells to apoptosis or senescence, but the mechanisms of this increase are unknown. Here we show that ROS production by mitochondrial complex I increases in response to oxidation of the mitochondrial glutathione pool. This correlates with thiols on the 51- and 75-kDa subunits of complex I forming mixed disulfides with glutathione. Glutathionylation of complex I increases superoxide production by the complex, and when the mixed disulfides are reduced, superoxide production returns to basal levels. Within intact mitochondria oxidation of the glutathione pool to glutathione disulfide also leads to glutathionylation of complex I, which correlates with increased superoxide formation. In this case, most of this superoxide is converted to hydrogen peroxide, which can then diffuse into the cytoplasm. This mechanism of reversible mitochondrial ROS production suggests how mitochondria might regulate redox signaling and shows how oxidation of the mitochondrial glutathione pool could contribute to the pathological changes that occur to mitochondria during oxidative stress.  相似文献   

4.
An inverse correlation between free radical production by isolated mitochondria and longevity in homeotherms has been reported, but previous comparative studies ignored possible confounding effects of body mass and phylogeny. We investigated this correlation by comparing rates of hydrogen peroxide (H(2)O(2)) production by heart mitochondria isolated from groups or pairs of species selected to have very different maximum lifespans but similar body masses (small mammals, medium-sized mammals, birds). During succinate oxidation, H(2)O(2) production rates were generally lower in the longer-lived species; the differences arose at complex I of the electron transport chain during reverse electron transport. Additional data were obtained from large species and the final dataset comprised mouse, rat, white-footed mouse, naked mole-rat, Damara mole-rat, guinea pig, baboon, little brown bat, Brazilian free-tailed bat, ox, pigeon and quail. In this dataset, maximum lifespan was negatively correlated with H(2)O(2) production at complex I during reverse electron transport. Analysis of residual maximum lifespan and residual H(2)O(2) production revealed that this correlation was even more significant after correction for effects of body mass. To remove effects of phylogeny, independent phylogenetic contrasts were obtained from the residuals. These revealed an inverse association between maximum lifespan and H(2)O(2) production that was significant by sign test, but fell short of significance by regression analysis. These findings indicate that enhanced longevity may be causally associated with low free radical production by mitochondria across species over two classes of vertebrate homeotherms.  相似文献   

5.
We investigated the effects of diphenyleneiodonium (DPI) on superoxide production by complex I in mitochondria isolated from rat skeletal muscle. Superoxide production was measured indirectly as hydrogen peroxide production. In a conventional medium containing chloride, DPI strongly inhibited superoxide production by complex I driven by reverse electron transport from succinate. In principle, this inhibition could be explained by an observed decrease in the mitochondrial pH gradient caused by the known chloride-hydroxide antiport activity of DPI. In a medium containing gluconate instead of chloride, DPI did not affect the pH gradient. In this gluconate medium, DPI still inhibited superoxide production driven by reverse electron transport, showing that the inhibition of superoxide production was not dependent on changes in the pH gradient. It had no effect on superoxide production during forward electron transport from NAD-linked substrates in the presence of rotenone (to maximise superoxide production from the flavin of complex I) or antimycin (to maximise superoxide production from complex III), suggesting that the effects of DPI were not through inhibition of the flavin. We conclude that DPI has the novel and potentially very useful ability to prevent superoxide production from the site in complex I that is active during reverse electron transport, without affecting superoxide production during forward electron transport.  相似文献   

6.
We investigated the effects of diphenyleneiodonium (DPI) on superoxide production by complex I in mitochondria isolated from rat skeletal muscle. Superoxide production was measured indirectly as hydrogen peroxide production. In a conventional medium containing chloride, DPI strongly inhibited superoxide production by complex I driven by reverse electron transport from succinate. In principle, this inhibition could be explained by an observed decrease in the mitochondrial pH gradient caused by the known chloride-hydroxide antiport activity of DPI. In a medium containing gluconate instead of chloride, DPI did not affect the pH gradient. In this gluconate medium, DPI still inhibited superoxide production driven by reverse electron transport, showing that the inhibition of superoxide production was not dependent on changes in the pH gradient. It had no effect on superoxide production during forward electron transport from NAD-linked substrates in the presence of rotenone (to maximise superoxide production from the flavin of complex I) or antimycin (to maximise superoxide production from complex III), suggesting that the effects of DPI were not through inhibition of the flavin. We conclude that DPI has the novel and potentially very useful ability to prevent superoxide production from the site in complex I that is active during reverse electron transport, without affecting superoxide production during forward electron transport.  相似文献   

7.
The rates of NADH-supported superoxide/hydrogen peroxide production by membrane-bound bovine heart respiratory complex I, soluble pig heart dihydrolipoamide dehydrogenase (DLDH), and by accompanying operation of these enzymes in rat heart mitochondrial matrix were measured as a function of the pool of pyridine nucleotides and its redox state. Each of the activities showed nontrivial dependence on nucleotide pool concentration. The NAD(+)/NADH ratios required for their half maximal capacities were determined. About half of the total NADH-supported H(2)O(2) production by permeabilized mitochondria in the absence of stimulating ammonium could be accounted for by DLDH activity. The significance of the mitochondrial NADH-dependent hydrogen peroxide production under physiologically relevant conditions is discussed. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

8.
Abstract: Both glutamate and reactive oxygen species have been implicated in excitotoxic neuronal injury, and mitochondria may play a key role in the mediation of this process. In this study, we examined whether glutamate-receptor stimulation and oxidative stress interact to affect the mitochondrial membrane potential (ΔΨ). We measured ΔΨ in rat forebrain neurons with the ratiometric fluorescent dye JC-1 by using laser scanning confocal imaging. Intracellular oxidant levels were measured by using the oxidation-sensitive dyes 2',7'-dichlorodihydrofluorescein (DCFH2) and dihydroethidium (DHE). Application of hydrogen peroxide (0.3–3 m M ) or 1 m M xanthine/0.06 U/ml xanthine oxidase decreased ΔΨ in a way that was independent of the presence of extracellular Ca2+ and was not affected by the addition of cyclosporin A, suggesting the presence of either a cyclosporin A-insensitive form of permeability transition, or a separate mechanism. tert -Butylhydroperoxide (730 µ M ) had less of an effect on ΔΨ than hydrogen peroxide despite similar effects on intracellular DCFH2 or DHE oxidation. Hydrogen peroxide-, tert -butylhydroperoxide-, and superoxide-enhanced glutamate, but not kainate, induced decreases in ΔΨ. The combined effect of peroxide or superoxide plus glutamate was Ca2+ dependent and was partially inhibited by cyclosporin A. These results suggest that oxidants and glutamate depolarize mitochondria by different mechanisms, and that oxidative stress may enhance glutamate-mediated mitochondrial depolarization.  相似文献   

9.
Lambert AJ  Brand MD 《Aging cell》2007,6(4):417-420
This review focuses on some of the 'hot topics' that fall under the general heading 'mitochondria and aging'. For each selected topic, we highlight recent publications that have either addressed specific problems within the field or presented novel findings of interest regarding the links between mitochondria and aging. These include studies on the structure of complex I and the mechanisms of superoxide production by this complex; work showing a novel site of hydrogen peroxide production within mitochondria that is modulated by caloric restriction; explorations of the relationship between the rate of evolution of mitochondrial DNA and lifespan; a demonstration that mitochondrial DNA mutations do not limit lifespan in mice; and investigations of the effects of mitochondrial fission on aging. We also list other relevant articles of interest and suggest some key challenges for the field in the near future.  相似文献   

10.
NADH-supported generation of H2O2 by permeabilized rat heart mitochondria was partially prevented by the specific complex I-directed inhibitor, NADH-OH, and was significantly stimulated by ammonium. Ammonium did not affect H2O2 production by complex I in coupled submitochondrial particles. The soluble mitochondrial matrix protein fraction catalyzed NADH-dependent H2O2 production, which was greatly (approximately 10-fold) stimulated by ammonium. We conclude that complex I is not the major contributor to mitochondrial superoxide (hydrogen peroxide) generation and that there are specific ammonium-sensitive NADH:oxygen oxidoreductase(s) in the mitochondrial matrix which are responsible for mitochondrial H2O2 production.  相似文献   

11.
Oxygen is toxic to aerobic animals because it is univalently reduced inside cells to oxygen free radicals. Studies dealing with the relationship between oxidative stress and aging in different vertebrate species and in caloric-restricted rodents are discussed in this review. Healthy tissues mainly produce reactive oxygen species (ROS) at mitochondria. These ROS can damage cellular lipids, proteins and, most importantly, DNA. Although antioxidants help to control this oxidative stress in cells in general, they do not decrease the rate of aging, because their concentrations are lower in long- than in short-lived animals and because increasing antioxidant levels does not increase vertebrate maximum longevity. However, long-lived homeothermic vertebrates consistently have lower rates of mitochondrial ROS production and lower levels of steady-state oxidative damage in their mitochondrial DNA than short-lived ones. Caloric-restricted rodents also show lower levels of these two key parameters than controls fed ad libitum. The decrease in mitochondrial ROS generation of the restricted animals has been recently localized at complex I and the mechanism involved is related to the degree of electronic reduction of the complex I ROS generator. Strikingly, the same site and mechanism have been found when comparing a long- with a short-lived animal species. It is suggested that a low rate of mitochondrial ROS generation extends lifespan both in long-lived and in caloric-restricted animals by determining the rate of oxidative attack and accumulation of somatic mutations in mitochondrial DNA.  相似文献   

12.
Characterization of superoxide-producing sites in isolated brain mitochondria   总被引:17,自引:0,他引:17  
Mitochondrial respiratory chain complexes I and III have been shown to produce superoxide but the exact contribution and localization of individual sites have remained unclear. We approached this question investigating the effects of oxygen, substrates, inhibitors, and of the NAD+/NADH redox couple on H2O2 and superoxide production of isolated mitochondria from rat and human brain. Although rat brain mitochondria in the presence of glutamate+malate alone do generate only small amounts of H2O2 (0.04 +/- 0.02 nmol H2O2/min/mg), a substantial production is observed after the addition of the complex I inhibitor rotenone (0.68 +/- 0.25 nmol H2O2/min/mg) or in the presence of the respiratory substrate succinate alone (0.80 +/- 0.27 nmol H2O2/min/mg). The maximal rate of H2O2 generation by respiratory chain complex III observed in the presence of antimycin A was considerably lower (0.14 +/- 0.07 nmol H2O2/min/mg). Similar observations were made for mitochondria isolated from human parahippocampal gyrus. This is an indication that most of the superoxide radicals are produced at complex I and that high rates of production of reactive oxygen species are features of respiratory chain-inhibited mitochondria and of reversed electron flow, respectively. We determined the redox potential of the superoxide production site at complex I to be equal to -295 mV. This and the sensitivity to inhibitors suggest that the site of superoxide generation at complex I is most likely the flavine mononucleotide moiety. Because short-term incubation of rat brain mitochondria with H2O2 induced increased H2O2 production at this site we propose that reactive oxygen species can activate a self-accelerating vicious cycle causing mitochondrial damage and neuronal cell death.  相似文献   

13.
Melvin RG  Ballard JW 《Aging cell》2006,5(3):225-233
Lifespans of organisms vary greatly even among individuals of the same species. Under the framework of the free oxygen radical theory of aging, it is predicted that variation in individual lifespan within a species will correlate with variation in the accumulation of oxidative damage to cell components from reactive oxygen species. In this study we test the hypothesis that variation in survival of three wild-caught Drosophila simulans fly lines (HW09, NC48 and MD106) correlates with three key aspects of mitochondrial bioenergetics. The rank order of median survival was HW09 > MD106 > NC48. Young HW09 flies (11-18 days) had (i) highest ADP:O (quantity of oxygen consumed by mitochondria when provided with a quantity of ADP) when metabolizing both electron transport chain complex I and complex III substrates; (ii) lowest rate of mitochondrial hydrogen peroxide production from complex III; and (iii) highest cytochrome c oxidase activity from complex IV. Rate of hydrogen peroxide production increased and cytochrome c oxidase activity decreased in all lines in the age range 11-25 days. This is the first study to correlate natural variation in organism survival with natural variation in mitochondrial bioenergetics.  相似文献   

14.
Birds are unique since they can combine a high rate of oxygen consumption at rest with a high maximum life span (MLSP). The reasons for this capacity are unknown. A similar situation is present in primates including humans which show MLSPs higher than predicted from their rates of O2 consumption. In this work rates of oxygen radical production and O2 consumption by mitochondria were compared between adult male rats (MLSP = 4 years) and adult pigeons (MLSP = 35 years), animals of similar body size. Both the O2 consumption of the whole animal at rest and the O2 consumption of brain, lung and liver mitochondria were higher in the pigeon than in the rat. Nevertheless, mitochondrial free radical production was 2-4 times lower in pigeon than in rat tissues. This is possible because pigeon mitochondria show a rate of free radical production per unit O2 consumed one order of magnitude lower than rat mitochondria: bird mitochondria show a lower free radical leak at the respiratory chain. This result, described here for the first time, can possibly explain the capacity of birds to simultaneously increase maximum longevity and basal metabolic rate. It also suggests that the main factor relating oxidative stress to aging and longevity is not the rate of oxygen consumption but the rate of oxygen radical production. Previous inconsistencies of the rate of living theory of aging can be explained by a free radical theory of aging which focuses on the rate of oxygen radical production and on local damage to targets relevant for aging situated near the places where free radicals are continuously generated.  相似文献   

15.
We test the 'free radical theory of aging' using six species of colubrid snakes (numerous, widely distributed, non-venomous snakes of the family Colubridae) that exhibit long (> 15 years) or short (< 10 years) lifespans. Because the 'rate of living theory' predicts metabolic rates to be correlated with rates of aging and oxidative damage results from normal metabolic processes we sought to answer whether physiological parameters and locomotor performance (which is a good predictor of survival in juvenile snakes) mirrored the evolution of lifespans in these colubrid snakes. We measured whole animal metabolic rate (oxygen consumption Vo2), locomotor performance, cellular metabolic rate (mitochondrial oxygen consumption), and oxidative stress potential (hydrogen peroxide production by mitochondria). Longer-lived colubrid snakes have greater locomotor performance and reduced hydrogen peroxide production than short-lived species, while whole animal metabolic rates and mitochondrial efficiency did not differ with lifespan. We present the first measures testing the 'free radical theory of aging' using reptilian species as model organisms. Using reptiles with different lifespans as model organisms should provide greater insight into mechanisms of aging.  相似文献   

16.
The effects of cannabinoids in mitochondria after acute oxidative stress insult are not fully established. We investigated the ability of CP55,940 and JWH-015 to scavenge reactive oxygen species and their effect on mitochondria permeability transition (MPT) in either a mitochondria-free superoxide anion generation system, intact rat brain mitochondria or in sub-mitochondrial particles (SMP) treated with paraquat (PQ). Oxygen consumption, mitochondrial membrane potential (Δψm) and MPT were determined as parameters of mitochondrial function. It is found that both cannabinoids effectively attenuate mitochondrial damage against PQ-induced oxidative stress by scavenging anion superoxide radical (O2 ∙−) and hydrogen peroxide (H2O2), maintaining Δψm and by avoiding Ca2+-induced mitochondrial swelling. Understanding the mechanistic action of cannabinoids on mitochondria might provide new insights into more effective therapeutic approaches for oxidative stress related disorders.  相似文献   

17.
Vitamin E regulates mitochondrial hydrogen peroxide generation.   总被引:11,自引:0,他引:11  
The mitochondrial electron transport system consumes more than 85% of all oxygen used by the cells, and up to 5% of the oxygen consumed by mitochondria is converted to superoxide, hydrogen peroxide, and other reactive oxygen species (ROS) under normal physiologic conditions. Disruption of mitochondrial ultrastructure is one of the earliest pathologic events during vitamin E depletion. The present studies were undertaken to test whether a direct link exists between vitamin E and the production of hydrogen peroxide in the mitochondria. In the first experiment, mice were fed a vitamin E-deficient or-sufficient diet for 15 weeks, after which the mitochondria from liver and skeletal muscle were isolated to determine the rates of hydrogen peroxide production. Deprivation of vitamin E resulted in an approximately 5-fold increase of mitochondrial hydrogen peroxide production in skeletal muscle and a 1-fold increase in liver when compared with the vitamin E-supplemented group. To determine whether vitamin E can dose-dependently influence the production of hydrogen peroxide, four groups of male and female rats were fed diets containing 0, 20, 200, or 2000 lU/kg vitamin E for 90 d. Results showed that dietary vitamin E dose-dependently attenuated hydrogen peroxide production in mitochondria isolated from liver and skeletal muscle of male and female rats. Female rats, however, were more profoundly affected by dietary vitamin E than male rats in the suppression of mitochondrial hydrogen peroxide production in both organs studied. These results showed that vitamin E can directly regulate hydrogen peroxide production in mitochondria and suggest that the overproduction of mitochondrial ROS is the first event leading to the tissue damage observed in vitamin E-deficiency syndromes. Data further suggested that by regulating mitochondrial production of ROS, vitamin E modulates the expression and activation of signal transduction pathways and other redox-sensitive biologic modifiers, and thereby delays or prevents degenerative tissue changes.  相似文献   

18.
The goal of this study is to test the role of mitochondria and of mitochondrial metabolism in determining the processes that influence aging of female and male Drosophila. We observe that Drosophila simulans females tended to have shorter lifespan, higher levels of hydrogen peroxide production and significantly lower levels of catalase but not superoxide dismutase compared to males. In contrast, mammalian females tend to be longer lived, have lower rates of reactive oxygen species production and higher antioxidant activity. In both Drosophila and mammals, mitochondria extracted from females consume a higher quantity of oxygen when provided with adenosine diphosphate and have a greater mtDNA copy number than males. Combined, these data illustrate important similarities between the parameters that influence aging and mitochondrial metabolism in Drosophila and in mammals but also show surprising differences.  相似文献   

19.
We searched for possible sites of superoxide generation in the complex I segment of the respiratory chain by studying both forward and reverse electron transfer reactions in isolated rat heart mitochondria. Superoxide production was monitored by measuring the release of hydrogen peroxide from mitochondria with a fluorescence spectrophotometer using the Amplex red/horseradish peroxidase system. In the forward electron transfer, a slow superoxide production in the presence of glutamate and malate was enhanced by both rotenone and piericidin A (specific inhibitors at the end of the complex I respiratory chain). Both diphenileneiodonium and ethoxyformic anhydride (inhibitors for respiratory components located upstream of the respiratory chain) inhibited the enhancement by rotenone and piericidin A.In contrast, in reverse electron transfer driven by ATP, both diphenileneiodonium and ethoxyformic anhydride enhanced the superoxide production. Piericidin A also increased superoxide production. Rotenone increased it only in the presence of piericidin A. Our results suggest that the major site of superoxide generation is not flavin, but protein-associated ubisemiquinones which are spin-coupled with iron-sulfer cluster N2.  相似文献   

20.
Brain seizure activity is characterised by intense activation of mitochondrial oxidative phosphorylation. This stimulation of oxidative phosphorylation is in the low magnesium model of seizure-like events accompanied by substantial increase in formation of reactive oxygen species (ROS). However, it has remained unclear which ROS-generating sites can be attributed to this phenomenon. Here, we report stimulatory effects of calcium ions and uncouplers, mimicking mitochondrial activation, on ROS generation of isolated rat and mouse brain mitochondria. Since these stimulatory effects were visible with superoxide sensitive dyes, but with hydrogen peroxide sensitive dyes only in the additional presence of SOD, we conclude that the complex redox properties of the ‘Qo’ center at respiratory chain complex III are very likely responsible for these observations. In accordance with this hypothesis redox titrations of the superoxide production of antimycin-inhibited submitochondrial particles with the succinate/fumarate redox couple confirmed for brain tissue a bell-shaped dependency with a maximal superoxide production rate at + 10 mV (pH = 7.4). This reflects the complex redox properties of a semiquinone species which is the direct electron donor for oxygen reduction in complex III-dependent superoxide production. Therefore, we conclude that under conditions of increased energy load the complex III site can contribute to superoxide production of brain mitochondria, which might be relevant for epilepsy-related seizure activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号