首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have introduced into Hansenula polymorpha an extra copy of its alcohol oxidase gene. This gene which is under the control of the Saccharomyces cerevisiae phosphoglycerate kinase promoter is integrated in a chromosome different from the one containing the endogenous gene. Cells with the extra alcohol oxidase gene, grown on glucose or ethanol as the sole carbon source, express enzymatically active alcohol oxidase. However, other enzymes characteristic for methylotrophic growth conditions are absent or present at low levels. Most of the alcohol oxidase occurs in the octameric state and immuno- and cytochemical evidence shows that it is located in a single enlarged peroxisome per cell. Such peroxisomes show crystalloid inclusions which are lacking in the peroxisomes present in glucose grown control cells. Our results suggest that import into peroxisomes of H. polymorpha, assembly and activation of alcohol oxidase is not conditionally dependent on adaptation to methylotrophic growth conditions and that proliferation of peroxisomes is a well-programmed process that is not triggered solely by overproduction of a peroxisomal protein.  相似文献   

3.
Peroxisomal alcohol oxidase (AO) from Hansenula polymorpha is inactive and partially mislocalized to the cytosol upon synthesis in Saccharomyces cerevisiae. Co-production with H. polymorpha pyruvate carboxylase (HpPyc1p) resulted in AO activation, but did not improve import into peroxisomes. We show that import of AO mediated by S. cerevisiae Pex5p is strictly dependent on the peroxisomal targeting signal 1 (PTS1) of AO and independent of HpPyc1p. In contrast, HpPex5p-mediated sorting of AO into S. cerevisiae peroxisomes is independent of the PTS1, but requires an alternative PTS that is only formed when HpPyc1p is co-produced and most likely involves folding and co-factor binding to AO.  相似文献   

4.
We have analyzed the properties of peroxisomal remnants in Hansenula polymorpha pex5 cells. In such cells PTS1 matrix protein import is fully impaired. In H. polymorpha pex5 cells, grown on ethanol/ammonium sulfate, conditions that repressed the PTS2 protein amine oxidase (AMO), peroxisomal structures were below the limit of detection. In methanol/ammonium sulfate-grown cells, normal peroxisomes are absent, but a few small membranous structures were observed that apparently represented peroxisomal ghosts since they contained Pex14p. These structures were the target of a Pex10p.myc fusion protein that was produced in pex5 cells under the control of the homologous alcohol oxidase promoter (strain pex5::P(AOX).PEX10.MYC). Glycerol/methanol/ammonium sulfate-grown cells of this transformant were placed in fresh glucose/methylamine media, conditions that fully repress the synthesis of the Pex10p.myc fusion protein but induce the synthesis of AMO. Two hours after the shift Pex10p.myc-containing structures were detectable that had accumulated newly synthesized AMO protein and which during further cultivation developed in normal peroxisomes. Concurrently, the remaining portion of these structures was rapidly degraded. These findings indicate that peroxisomal remnants in pex5 cells can develop into peroxisomes. Also, as for normal peroxisomes in H. polymorpha, apparently a minor portion of these structures actually take part in the development of these organelles.  相似文献   

5.
Hansenula polymorpha Deltapex14 cells are affected in peroxisomal matrix protein import and lack normal peroxisomes. Instead, they contain peroxisomal membrane remnants, which harbor a very small amount of the major peroxisomal matrix enzymes alcohol oxidase (AO) and dihydroxyacetone synthase (DHAS). The bulk of these proteins is, however, mislocated in the cytosol. Here, we show that in Deltapex14 cells overproduction of the PTS1 receptor, Pex5p, leads to enhanced import of the PTS1 proteins AO and DHAS but not of the PTS2 protein amine oxidase. The import of the PTS1 protein catalase (CAT) was not stimulated by Pex5p overproduction. The difference in import behavior of AO and CAT was not related to their PTS1, since green fluorescent protein fused to the PTS1 of either AO or CAT were both not imported in Deltapex14 cells overproducing Pex5p. When produced in a wild type control strain, both proteins were normally imported into peroxisomes. In Deltapex14 cells overproducing Pex5p, Pex5p had a dual location and was localized in the cytosol and bound to the outer surface of the peroxisomal membrane. Our results indicate that binding of Pex5p to the peroxisomal membrane and import of certain PTS1 proteins can proceed in the absence of Pex14p.  相似文献   

6.
Previously, Waterham et al. [EMBO J. 12 (1993) 4785] reported that cytosolic oligomeric alcohol oxidase (AO) is not incorporated into peroxisomes after reassembly of the organelles in the temperature-sensitive peroxisome-deficient mutant pex1-6(ts) of Hansenula polymorpha shifted to permissive growth conditions. Here, we show that the failure to import assembled AO protein is not exemplary for other folded proteins because both an artificial peroxisomal matrix protein, PTS1-tagged GFP (GFP.SKL), and the endogenous dimeric PTS1 protein dihydroxyacetone synthase (DHAS) were imported under identical conditions. In vitro receptor-ligand binding studies using immobilised H. polymorpha Pex5p and crude extracts of methanol-induced pex1-6(ts) cells, showed that AO octamers did not interact with the recombinant PTS1 receptor, at conditions that allowed binding of folded GFP.SKL and dimeric DHAS. This shows that import of oligomeric proteins is not a universal pathway for peroxisomal matrix proteins.  相似文献   

7.
We report on the rerouting of peroxisomal alcohol oxidase (AO) to the secretory pathway of Hansenula polymorpha. Using the leader sequence of the Saccharomyces cerevisiae mating factor alpha (MFalpha) as sorting signal, AO was correctly sorted to the endoplasmic reticulum (ER), which strongly proliferated in these cells. The MFalpha presequence, but not the prosequence, was cleaved from the protein. AO protein was present in the ER as monomers that lacked FAD, and hence was enzymatically inactive. Furthermore, the recombinant AO protein was subject to gradual degradation, possibly because the protein did not fold properly. However, when the S. cerevisiae invertase signal sequence (ISS) was used, secretion of AO protein was observed in conjunction with bulk of the protein being localized to the ER. The amount of secreted AO protein increased with increasing copy numbers of the AO expression cassette integrated into the genome. The secreted AO protein was correctly processed and displayed enzyme activity.  相似文献   

8.
We have studied the intraperoxisomal location of catalase in peroxisomes of methanol-grown Hansenula polymorpha by (immuno)cytochemical means. In completely crystalline peroxisomes, in which the crystalline matrix is composed of octameric alcohol oxidase (AO) molecules, most of the catalase protein is located in a narrow zone between the crystalloid and the peroxisomal membrane. In non-crystalline organelles the enzyme was present throughout the peroxisomal matrix. Other peroxisomal matrix enzymes studied for comparison, namely dihydroxyacetone synthase, amine oxidase and malate synthase, all were present throughout the AO crystalloid. The advantage of location of catalase at the edges of the AO crystalloids for growth of the organism on methanol is discussed.  相似文献   

9.
Alcohol oxidase (AO) is a peroxisomal enzyme that catalyses the first step in methanol metabolism in yeast. Monomeric, inactive AO protein is synthesised in the cytosol and subsequently imported into peroxisomes, where the enzymatically active, homo-octameric form is found. The mechanisms involved in AO octamer assembly are largely unclear. Here we describe the isolation of Hansenula polymorpha mutants specifically affected in AO assembly. These mutants are unable to grow on methanol and display reduced AO activities. Based on their phenotypes, three major classes of mutants were isolated. Three additional mutants were isolated that each displayed a unique phenotype. Complementation analysis revealed that the isolated AO assembly mutants belonged to 10 complementation groups.  相似文献   

10.
Laht S  Karp H  Kotka P  Järviste A  Alamäe T 《Gene》2002,296(1-2):195-203
Glucokinase gene (HPGLK1) was cloned from a methylotrophic yeast Hansenula polymorpha by complementation of glucose-phosphorylation deficiency in a H. polymorpha double kinase-negative mutant A31-10 by a genomic library. An open reading frame of 1416 nt encoding a 471-amino-acid protein with calculated molecular weight 51.6 kDa was characterized in the genomic insert of the plasmid pH3. The protein sequence deduced from HPGLK1 exhibited 55 and 46% identity with glucokinases from Saccharomyces cerevisiae and Aspergillus niger, respectively. The enzyme phosphorylated glucose, mannose and 2-deoxyglucose, but not fructose. Transformation of HPGLK1 into A31-10 restored glucose repression of alcohol oxidase and catalase in the mutant. Transformation of HPGLK1 into S. cerevisiae triple kinase-negative mutant DFY632 showed that H. polymorpha glucokinase cannot transmit the glucose repression signal in S. CEREVSIAE: synthesis of invertase and maltase in respective transformants was insensitive to glucose repression similarly to S. cerevisiae DFY568 possessing only glucokinase.  相似文献   

11.
12.
13.
We have isolated the Penicillium chrysogenum pex5 gene encoding the receptor for microbody matrix proteins containing a type 1 peroxisomal targeting signal (PTS1). Pc-pex5 contains 2 introns and encodes a protein of approximately 75 kDa. P. chrysogenum pex5 disruptants appear to be highly unstable, show poor growth, and are unable to sporulate asexually. Furthermore, pex5 cells mislocalize a fluorescent PTS1 reporter protein to the cytosol. Pc-pex5 was expressed in a PEX5 null mutant of the yeast Hansenula polymorpha. Detailed analysis demonstrated that the PTS1 proteins dihydroxyacetone synthase and catalase were almost fully imported into microbodies. Surprisingly, alcohol oxidase, which also depends on Pex5p for import into microbodies, remained mainly in the cytosol. Thus, P. chrysogenum Pex5p has a different specificity of cargo recognition than its H. polymorpha counterpart. This was also suggested by the observation that Pc-Pex5p sorted a reporter protein fused to various functional PTS1 signals with different efficiencies.  相似文献   

14.
Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1 leads to a pleiotropic phenotype that includes the constitutive presence of peroxisomes and peroxisomal enzymes in glucose-grown cells. Glucose transport and repression defects in a UV-induced gcr1-2 mutant were found to result from a missense point mutation that substitutes a serine residue (Ser(85)) with a phenylalanine in the second predicted transmembrane segment of the Gcr1 protein. In addition to glucose, mannose and trehalose fail to repress the peroxisomal enzyme, alcohol oxidase in gcr1-2 cells. A mutant deleted for the GCR1 gene was additionally deficient in fructose repression. Ethanol, sucrose, and maltose continue to repress peroxisomes and peroxisomal enzymes normally and therefore, appear to have GCR1-independent repression mechanisms in H. polymorpha. Among proteins of the hexose transporter family of baker's yeast, Saccharomyces cerevisiae, the amino acid sequence of the H. polymorpha Gcr1 protein shares the highest similarity with a core region of Snf3p, a putative high affinity glucose sensor. Certain features of the phenotype exhibited by gcr1 mutants suggest a regulatory role for Gcr1p in a repression pathway, along with involvement in hexose transport.  相似文献   

15.
16.
The most commonly used expression platform for production of recombinant proteins in the methylotrophic yeast Hansenula polymorpha relies on the strong and strictly regulated promoter from the gene encoding peroxisomal enzyme alcohol (or methanol) oxidase (P(MOX)). Expression from P(MOX) is induced by methanol and is partially derepressed in glycerol or xylose medium, whereas in the presence of hexoses, disaccharides or ethanol, it is repressed. The need for methanol for maximal induction of gene expression in large-scale fermentation is a significant drawback, as this compound is toxic, flammable, supports a slow growth rate and requires extensive aeration. We isolated H. polymorpha mutants deficient in glucose repression of P(MOX) due to an impaired HpGCR1 gene, and other yet unidentified secondary mutations. The mutants exhibited pronounced defects in P(MOX) regulation only by hexoses and xylose, but not by disaccharides or ethanol. With one of these mutant strains as hosts, we developed a modified two-carbon source mode expression platform that utilizes convenient sugar substrates for growth (sucrose) and induction of recombinant protein expression (glucose or xylose). We demonstrate efficient regulatable by sugar carbon sources expression of three recombinant proteins: a secreted glucose oxidase from the fungus Aspergillus niger, a secreted mini pro-insulin, and an intracellular hepatitis B virus surface antigen in these mutant hosts. The modified expression platform preserves the favorable regulatable nature of P(MOX) without methanol, making a convenient alternative to the traditional system.  相似文献   

17.
Inactivation of peroxisomal enzymes in the yeast Hansenula polymorpha was studied following transfer of cells into cultivation media in which their activity was no longer required for growth. After transfer of methanol-grown cells into media containing glucose - a substrate that fully represses alcohol oxidase synthesis - the rapid inactivation of alcohol oxidase and catalase was paralleled by a disappearance of alcohol oxidase and catalase protein. The rate and extent of this inactivation was dependent upon conditions of cultivation of cells prior to their transfer. This carbon catabolite inactivation of alcohol oxidase was paralleled by degradation of peroxisomes which occurred by means of an autophagic process that was initiated by the formation of a number of electron-dense membranes around the organelles to be degraded. Sequestration was confined to peroxisomes; other cell-components such as ribosomes were absent in the sequestered cell compartment. Also, cytochemically, hydrolytic enzymes could not be demonstrated in these autophagosomes. The vacuole played a major role in the subsequent peroxisomal breakdown since it provided the enzymes required for proteolysis. Two basically similar mechanisms were observed with respect to the administration of vacuolar enzymes into the sequestered cell compartment. The first mechanism involved incorporation of a small vacuolar vesicle into the sequestered cell compartment. The delimiting membrane of this vacuolar vesicle subsequently disrupted, thereby exposing the contents of the sequestered cell compartment to vacuolar hydrolases which then degraded the peroxisomal proteins. The second mechanism, observed in cells which already contained one or more autophagic vacuoles, included fusion of the delimiting membranes of an autophagosome with the membrane surrounding an autophagic vacuole which led to migration of the peroxisome inside the latter organelle. Peroxisomes of methanol-grown H. polymorpha were degraded individually. In one cell 2 or 3 peroxisomes might be subject to degradation at the same time, but they were never observed together in one autophagosome. However, fusions of autophagic vacuoles in one cell were frequently observed. After inhibition of the cell's energy-metabolism by cyanide ions or during anaerobic incubations the formation of autophagosomes was prevented and degradation was not observed.  相似文献   

18.
Candida yeasts rapidly form peroxisomes of simple function and composition when grown on methanol. Because the induction is both massive and rapid, this system may be useful for a detailed dissection of peroxisomal biogenesis. We report procedures to express peroxisomal proteins in cells and spheroplasts of Candida boidinii to stabilize peroxisomes in a lysate of spheroplasts and to obtain an enriched peroxisomal fraction. With these techniques we have been able to study the assembly of alcohol oxidase, a homo-octomeric flavoprotein, into the organelle in vivo. The primary translation product of alcohol oxidase comigrates on sodium dodecyl sulfate-polyacrylamide gels with the mature subunit. Pulse-chase experiments indicate that the newly synthesized monomer of alcohol oxidase has a half-life of about 20 min in intact cells and 13 min in spheroplasts before conversion to octomer. The monomer first appears in a high speed supernatant of a lysate of spheroplasts and then chases into a purified peroxisomal fraction before or during its octomerization. There is no detectable intermediary organelle involved in this process.  相似文献   

19.
Firefly luciferase is imported into peroxisomes in insects, mammals, plants, and yeast, which implies that the mechanism of protein translocation into peroxisomes has been conserved during eukaryotic evolution. The carboxyl-terminal tripeptide serine-lysine-leucine in luciferase acts as a peroxisomal import signal in mammalian cells. We have investigated whether this tripeptide is also involved in translocation of firefly luciferase into peroxisomes in yeast (Saccharomyces cerevisiae). We show by gene fusion experiments that the carboxyl-terminal 104 amino acids of luciferase can direct a heterologous protein to yeast peroxisomes. Luciferase mutant proteins were tested for their ability to be imported into yeast peroxisomes in vivo. We demonstrate that mutations in the carboxyl-terminal serine-lysine-leucine tripeptide abolish translocation of the protein into yeast peroxisomes. However, when a passenger protein was tagged at its carboxyl terminus with this tripeptide the fusion protein did not go to peroxisomes. These results indicate that, in yeast, the tripeptide is necessary but not sufficient for peroxisomal import.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号