首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In five anesthetized paralyzed cats, mechanically ventilated with tidal volumes of 36-48 ml, the isovolume pressure-flow relationships of the lung and respiratory system were studied. The expiratory pressure was altered between 3 and -12 cmH2O for single tidal expirations. Isovolume pressure-flow plots for three lung volumes showed that the resistive pressure-flow relationships were curvilinear in all cases, fitting Rohrer's equation: P = K1V + K2V2, where P is the resistive pressure loss, K1 and K2 are Rohrer's coefficients, and V is flow. Values of K1 and K2 declined with lung inflation, consistent with the volume dependence of pulmonary (RL) and respiratory system resistances (Rrs). During lung deflation against atmospheric pressure, RL and Rrs tended to remain constant through most of expiration, resulting in a nearly linear volume-flow relationship. In the presence of a fixed respiratory system elastance, the shape of the volume-flow profile depended on the balance between the volume and the flow dependence of RL and Rrs. However, the flow dependence of RL and Rrs indicates that their measured values will be affected by all factors that modify expiratory flow, e.g., respiratory system elastance, equipment resistance, and the presence of respiratory muscle activity.  相似文献   

2.
Infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury necessitating mechanical ventilation (MV). MV enhances apoptosis and inflammation in mice infected with pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for severe RSV infection in mice. We hypothesized that the Fas/Fas ligand (FasL) system, a dual proapoptotic/proinflammatory system involved in other forms of lung injury, is required for enhanced lung injury in mechanically ventilated mice infected with PVM. C57BL/6 mice and Fas-deficient ("lpr") mice were inoculated intratracheally with PVM. Seven or eight days after PVM inoculation, the mice were subjected to 4 h of MV (tidal volume 10 ml/kg, fraction of inspired O(2) = 0.21, and positive end-expiratory pressure = 3 cm H(2)O). Seven days after PVM inoculation, exposure to MV resulted in less severe injury in lpr mice than in C57BL/6 mice, as evidenced by decreased numbers of polymorphonuclear neutrophils in the bronchoalveolar lavage (BAL), and lower concentrations of the proinflammatory chemokines KC, macrophage inflammatory protein (MIP)-1α, and MIP-2 in the lungs. However, when PVM infection was allowed to progress one additional day, all of the lpr mice (7/7) died unexpectedly between 0.5 and 3.5 h after the onset of ventilation compared with three of the seven ventilated C57BL/6 mice. Parameters of lung injury were similar in nonventilated mice, as was the viral content in the lungs and other organs. Thus, the Fas/FasL system was partly required for the lung inflammatory response in ventilated mice infected with PVM, but attenuation of lung inflammation did not prevent subsequent mortality.  相似文献   

3.
In the current study, we hypothesize that senescent-dependent changes between airway and lung parenchymal tissues of C57BL/6J (B6) mice are not synchronized with respect to altered lung mechanics. Furthermore, aging modifications in elastin fiber and collagen content of the airways and lung parenchyma are remodeling events that differ with time. To test these hypotheses, we performed quasi-static pressure-volume (PV) curves and impedance measurements of the respiratory system in 2-, 20-, and 26-mo-old B6 mice. From the PV curves, the lung volume at 30 cmH(2)O pressure (V(30)) and respiratory system compliance (Crs) were significantly (P < 0.01) increased between 2 and 20 mo of age, representing about 80-84% of the total increase that occurred between 2 and 26 mo of age. Senescent-dependent changes in tissue damping and tissue elastance were analogous to changes in V(30) and Crs; that is, a majority of the parenchymal alterations in the lung mechanics occurred between 2 and 20 mo of age. In contrast, significant decreases in airway resistance (R) occurred between 20 and 26 mo of age; that is, the decrease in R between 2 and 20 mo of age represented only 29% (P > 0.05) of total decrease occurring through 26 mo. Morphometric analysis of the elastic fiber content in lung parenchyma was significantly (P < 0.01) decreased between 2 and 20 mo of age. To the contrary, increased collagen content was significantly delayed until 26 mo of age (P < 0.01, 2 vs. 26 mo). In conclusion, our data demonstrate that senescent-dependent changes in airway and lung tissue mechanics are not synchronized in B6 mice. Moreover, the reduction in elastic fiber content with age is an early lung remodeling event, and the increased collagen content in the lung parenchyma occurs later in senescence.  相似文献   

4.
Continuous estimation of time-varying respiratory mechanical parameters is required to fully characterize the time course of bronchoconstriction. To achieve such estimation, we developed an estimator that uses the recursive linear least-squares algorithm to fit the equation Ptr = RV + EV + K to measurements of tracheal pressure (Ptr) and flow (V). The volume (V) is obtained by numerical integration of V. The estimator has a finite memory with length into the past at each point in time that varies inversely with the difference between the current measurement of Ptr and that predicted by the model, to allow the algorithm to track rapidly varying parameters (R, E, and K). V usually exhibits significant drift and must be corrected. Of the several correction methods investigated, subtraction of the recursively weighted average of V before integration to V was found to perform best. The estimator was tested on simulated noisy data where it successfully followed a fivefold increase in R and a twofold increase in E occurring over 10 s. Three dogs and two cats were anesthetized, paralyzed, tracheostomized, and challenged with a bolus of methacholine (approximately 13 mg/kg iv). Increases of 3- to 10-fold were observed in R and 2- to 3-fold in E, beginning within 10-40 s after the bolus injection. In some animals we found that the increase in E occurred more slowly than that in R, which the V signal suggested was due to dynamic hyperinflation of the lungs. These results demonstrate that our recursive estimator is able to track rapid changes in respiratory mechanical parameters during bronchoconstrictor challenge.  相似文献   

5.
Decorin, a small leucine-rich proteoglycan with a widespread tissue distribution, is required for the normal fibrillogenesis of collagen in most tissues. Because collagen is important in determining the elastic behavior of the lung, we hypothesized that lung tissue mechanics would be altered in a mutant mouse in which the single decorin gene was abrogated by targeted deletion (Dcn-/-). Complex impedance of the respiratory system was measured in C57Bl/6 mice (Dcn-/- and Dcn+/+) using a small animal ventilator that delivers a volume signal with multiple frequencies to the trachea. A constant-phase model was fit to calculate airway resistance (R(aw)), tissue damping, and tissue elastance. Compliance of the respiratory system (C(rs)) was measured from a pressure volume curve during stepwise deflations. Lungs were excised, and parenchymal tissue strips were mounted in an organ bath for in vitro measurement of tissue impedance and quasistatic length-stress curves. In addition, pulmonary tissue was examined by immunohistochemistry and immunoblotting. In vivo, in the Dcn-/- mice, R(aw) was decreased and C(rs) was increased. Similarly, in vitro, length-stress curves showed increased compliance of the strips in the Dcn-/- mice. These alterations in lung tissue mechanical behavior in Dcn-/- mice support a critical role for decorin in the formation of the lung collagen network.  相似文献   

6.
A tracking impedance estimation technique was developed to follow the changes in total respiratory impedance (Zrs) during slow total lung capacity maneuvers in six anesthetized and mechanically ventilated BALB/c mice. Zrs was measured with the wave-tube technique and pseudorandom forced oscillations at nine frequencies between 4 and 38 Hz during inflation from a transrespiratory pressure of 0-20 cmH2O and subsequent deflation, each lasting for approximately 20 s. Zrs was averaged for 0.125 s and fitted by a model featuring airway resistance (Raw) and inertance, and tissue damping and elastance (H). Lower airway conductance (Glaw) was linearly related to volume above functional residual capacity (V) between 0 and 75-95% maximum V, with a mean slope of dGlaw/dV = 13.6 +/- 4.6 cmH2O-1. s-1. The interdependence of Raw and H was characterized by two distinct and closely linear relationships for the low- and high-volume regions, separated at approximately 40% maximum V. Comparison of Raw with the highest-frequency resistance of the total respiratory system revealed a marked volume-dependent contribution of tissue resistance to total respiratory system resistance, resulting in the overestimation of Raw by 19 +/- 8 and 163 +/- 40% at functional residual capacity and total lung capacity, respectively, whereas the lowest frequency reactance was proportional to H; these findings indicate that single-frequency resistance values may become inappropriate as surrogates of Raw when tissue impedance is changing.  相似文献   

7.
This study was aimed at measuring shear moduli in vivo in mechanically ventilated rats and comparing them to global lung mechanics. Wistar rats (n = 28) were anesthetized, tracheally intubated, and mechanically ventilated in supine position. The animals were randomly assigned to the healthy control or the lung injury group where lung injury was induced by bronchoalveolar lavage. The respiratory system elastance E(rs) was analyzed based on the single compartment resistance/elastance lung model using multiple linear regression analysis. The shear modulus (G) of alveolar parenchyma was studied using a newly developed endoscopic system with adjustable pressure at the tip that was designed to induce local mechanostimulation. The data analysis was then carried out with an inverse finite element method. G was determined at continuous positive airway pressure (CPAP) levels of 15, 17, 20, and 30 mbar. The resulting shear moduli of lungs in healthy animals increased from 3.3 ± 1.4 kPa at 15 mbar CPAP to 5.8 ± 2.4 kPa at 30 mbar CPAP (P = 0.012), whereas G was ~2.5 kPa at all CPAP levels for the lung-injured animals. Regression analysis showed a negative correlation between G and relative E(rs) in the control group (r = -0.73, P = 0.008 at CPAP = 20 mbar) and no significant correlation in the lung injury group. These results suggest that the locally measured G were inversely associated with the elastance of the respiratory system. Rejecting the study hypothesis the researchers concluded that low global respiratory system elastance is related to high local resistance against tissue deformation.  相似文献   

8.
We characterised early circulatory and respiratory responses to lipopolysaccharide from E. coli (LPS, serotype 0127:B8) in the isolated, ventilated and perfused rat lung preparation. Lungs were isolated from anaesthetised Wistar rats and perfused with full blood, platelet rich plasma (PRP), platelet poor plasma (PPP) or Krebs-Henseleit solution (KH). LPS (300 microg/ml) injected into the blood-perfused lung induced a characteristic biphasic response consisting of an immediate, transient decrease in respiratory tidal volume and an increase in pulmonary perfusion pressures followed by a delayed decrease in respiratory tidal volume. An immediate respiratory/circulatory response to LPS was of considerable magnitude only in full blood-perfused lung whereas the delayed response was fully expressed irrespective whether blood, PRP, PPP or KH was used for the lung perfusion. Immediate respiratory/circulatory response was inhibited by WEB 2170 (100 microM), a PAF receptor antagonist, and by camonagrel (300 microM), a TXA2 synthase inhibitor, but not by MK 571 (100 microM), a cysteinyl leukotriene receptor antagonist. Delayed respiratory response was inhibited by camonagrel only. In summary, we demonstrated that the immediate coupled respiratory/circulatory response is mediated by blood cell-derived PAF and TXA2 whereas the delayed uncoupled respiratory response is mediated by lung parenchyma-derived TXA2.  相似文献   

9.
Long-term neurochemical changes are responsible for therapeutic actions of fluoxetine. The role of increased central concentration of serotonin by inhibiting its re-uptake via fluoxetine on the central hypercapnic ventilatory response is complex and little is known. We aimed to research the effect of acute intracerebroventricular (ICV) injection of fluoxetine on hypercapnic ventilatory response in the absence of peripheral chemoreceptor impulses and the role of 5-HT2 receptors on responses. Eighteen anesthetized albino rabbits were divided as Fluoxetine and Ketanserin groups. For ICV administration of fluoxetine and ketanserin, a cannula was placed in the left lateral ventricle by the stereotaxic method. Respiratory frequency (fR), tidal volume (V(T)) and ventilation minute volume (V(E)) were recorded in both groups. ICV fluoxetine (10.12 mmol/kg) injection during normoxia caused significant increases in V(T) and V(E) (both P < 0.01) in the fluoxetine group. When the animals were switched to hypercapnia f/min, V(T) and V(E) increased significantly. The increases in percentage values in V(T) and V(E) in Fluoxetine + Hypercapnia phase were higher than those during hypercapnia alone (P < 0.01 and P < 0.05, respectively). On blocking of 5-HT2 receptors by ketanserin (0.25 mmol/kg), the ventilatory response to Fluoxetine was abolished and the degree of increases in V(T) and V(E) in the Ketanserin + Hypercapnia phase were lower than those during hypercapnia alone (P < 0.01 and P < 0.001, respectively). We concluded that acute central fluoxetine increases normoxic ventilation and also augments the stimulatory effect of hypercapnia on respiratory neuronal network by 5-HT2 receptors in the absence of peripheral chemoreceptor impulses.  相似文献   

10.
Abdominal distension (AD) occurs in pregnancy and is also commonly seen in patients with ascites from various causes. Because the abdomen forms part of the "chest wall," the purpose of this study was to clarify the effects of AD on ventilatory mechanics. Airway pressure, four (vertical) regional pleural pressures, and abdominal pressure were measured in five anesthetized, paralyzed, and ventilated upright pigs. The effects of AD on the lung and chest wall were studied by inflating a liquid-filled balloon placed in the abdominal cavity. Respiratory system, chest wall, and lung pressure-volume (PV) relationships were measured on deflation from total lung capacity to residual volume, as well as in the tidal breathing range, before and 15 min after abdominal pressure was raised. Increasing abdominal pressure from 3 to 15 cmH2O decreased total lung capacity and functional residual capacity by approximately 40% and shifted the respiratory system and chest wall PV curves downward and to the right. Much smaller downward shifts in lung deflation curves were seen, with no change in the transdiaphragmatic PV relationship. All regional pleural pressures increased (became less negative) and, in the dependent region, approached 0 cmH2O at functional residual capacity. Tidal compliances of the respiratory system, chest wall, and lung were decreased 43, 42, and 48%, respectively. AD markedly alters respiratory system mechanics primarily by "stiffening" the diaphragm/abdomen part of the chest wall and secondarily by restricting lung expansion, thus shifting the lung PV curve as seen after chest strapping. The less negative pleural pressures in the dependent lung regions suggest that nonuniformities of ventilation could also be accentuated and gas exchange impaired by AD.  相似文献   

11.
Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.  相似文献   

12.
The effect of severe generalized edema on respiratory system mechanics is not well described. We measured airway pressure, gastric pressure, and four vertical pleural pressures in 13 anesthetized paralyzed pigs ventilated in the upright position. Pressure-volume relationships of the respiratory system, chest wall, and lung were measured on deflation from total lung capacity to residual volume and during tidal breathing both before (control) and 50 min after one of two interventions. In one series of experiments, a volume equal to 15-20% of the pig's body weight was infused intravenously. In a second series, a balloon was placed in the peritoneal space to distend the abdomen to the same gastric pressures as achieved in the first series. Measurements were compared before and after either abdominal balloon inflation or volume infusion. Volume infusion increased the pleural pressure in dependent lung regions, decreased both total lung capacity (34%) and functional residual capacity (62%) (both P less than 0.05), and markedly shifted the respiratory system and chest wall pressure-volume curves to the right, but it only moderately affected the lung deflation curve. Tidal compliances of the respiratory system, chest wall, and lung decreased 36, 31, and 49%, respectively (all P less than 0.05). The effect of abdominal balloon inflation on respiratory system mechanics was similar to that of volume infusion. We conclude that infusing large volumes of fluid markedly alters chest wall mechanics, mainly by causing abdominal distension that prohibits descent of the diaphragm.  相似文献   

13.
Many chronic human lung diseases have their origin in early childhood, yet most murine models used to study them utilize adult mice. An important component of the asthma phenotype is exaggerated airway responses, frequently modelled by methacholine (MCh) challenge. The present study was undertaken to characterize MCh responses in mice from 2 to 8 wk of age measuring absolute lung volume and volume-corrected respiratory mechanics as outcome variables. Female BALB/c mice aged 2, 3, 4, 6, and 8 wk were studied during cumulative intravenous MCh challenge. Following each MCh dose, absolute lung volume was measured plethysmographically at functional residual volume and during a slow inflation to 20-hPa transrespiratory pressure. Respiratory system impedance was measured continuously during the inflation maneuver and partitioned into airway and constant-phase parenchymal components by model fitting. Volume-corrected (specific) estimates of respiratory mechanics were calculated. Intravenous MCh challenge induced a predominantly airway response with no evidence of airway closure in any age group. No changes in functional residual volume were seen in mice of any age during the MCh challenge. The specific airway resistance MCh dose response curves did not show significant differences between the age groups. The results from the present study do not show systematic differences in MCh responsiveness in mice from 2 to 8 wk of age.  相似文献   

14.
Mechanical ventilation has been demonstrated to exacerbate lung injury, and a sufficiently high tidal volume can induce injury in otherwise healthy lungs. However, it remains controversial whether injurious ventilation per se, without preceding lung injury, can initiate cytokine-mediated pulmonary inflammation. To address this, we developed an in vivo mouse model of acute lung injury produced by high tidal volume (Vt) ventilation. Anesthetized C57BL6 mice were ventilated at high Vt (34.5 +/- 2.9 ml/kg, mean +/- SD) for a duration of 156 +/- 17 min until mean blood pressure fell below 45 mmHg (series 1); high Vt for 120 min (series 2); or low Vt (8.8 +/- 0.5 ml/kg) for 120 or 180 min (series 3). High Vt produced progressive lung injury with a decrease in respiratory system compliance, increase in protein concentration in lung lavage fluid, and lung pathology showing hyaline membrane formation. High-Vt ventilation was associated with increased TNF-alpha in lung lavage fluid at the early stage of injury (series 2) but not the later stage (series 1). In contrast, lavage fluid macrophage inflammatory protein-2 (MIP-2) was increased in all high-Vt animals. Lavage fluid from high-Vt animals contained bioactive TNF-alpha by WEHI bioassay. Low-Vt ventilation induced minimal changes in physiology and pathology with negligible TNF-alpha and MIP-2 proteins and TNF-alpha bioactivity. These results demonstrate that high-Vt ventilation in the absence of underlying injury induces intrapulmonary TNF-alpha and MIP-2 expression in mice. The apparently transient nature of TNF-alpha upregulation may help explain previous controversy regarding the involvement of cytokines in ventilator-induced lung injury.  相似文献   

15.
Previous studies from our laboratories showed lung development differences between inbred strains of mice. In the present study, the C57BL/6J (B6) and DBA/2J (D2) strains were examined for senescent-dependent differences with respect to the lung structure and function. Specifically, we hypothesize that senescent changes in lung vary between strains due to identifiable gene expression differences. Quasi-static pressure-volume curves and respiratory impedance measurements were performed on 2- and 20-mo-old B6 and D2 mice. Lung volume at 30 cm H(2)O (V(30)) pressure was significantly (P < 0.01) increased with age in both strains, but the increase was proportionally greater in D2 (68%) than in B6 (40%) mice. In addition, decreased elastic recoil pressure at 50% of V(30) and a reduction in airway resistance as a function of positive end-expiratory pressure were observed in 20-mo-old D2 mice but not in B6 mice. Morphometric analysis of lung parenchyma showed significant decreases in elastic fiber content with age in both strains, but the collagen content was significantly (P < 0.01) increased with age in D2 but not B6 mice at 20 mo. Furthermore, using quantitative RT-PCR methods, gene expression differences between strains suggested that D2 mice significantly (P < 0.05) downregulated the expressions of elastin (Eln) and procollagen I, III, and VI (Col1a1, Col3a1, and Col6a3) in lung tissue at 20 mo of age. These age-dependent changes were accompanied by an increased gene expression in matrix metalloproteinase 9 (Mmp9) in D2 and an increase in tissue inhibitor of matrix metalloproteinase (Timp1 and Timp4) in B6 mice. In conclusion, the results from the present study demonstrate that lung mechanics of both strains show significant age-dependent changes. However, changes in D2 mice are accelerated relative to B6 mice. Moreover, gene expression differences appear to be involved in the strain-specific changes of lung mechanic properties.  相似文献   

16.
The effect of left lung atelectasis on the regional distribution of blood flow (Q), ventilation (V(A)) and gas exchange on the right lung ventilated with 100% O2 was studied in anesthetized dogs in the lateral decubitus posture. Q and V(A) were measured in 1.7 ml lung volume pieces using injected and aerosolized fluorescent microspheres, respectively. Hypoxic pulmonary vasoconstriction (HPV) in the atelectatic lung shifted flow to the ventilated lung. The increased flow in the ventilated lung ensured adequate gas exchange, compensating for the hypoxemia due to shunt contributed by the atelectatic lung. Left lung atelectasis caused a compensatory increase in the ventilated lung FRC that was smaller in the right (RLD) than left (LLD) lateral posture, the effect of lung compression by the atelectatic lung and mediastinal contents in the RLD posture. The O2 deficit measured by (A-a)DO2 increased with left lung atelectasis and was exacerbated in the LLD posture by 10 cm H2O PEEP, a result of increased shunt caused by a shift in Q from the ventilated to the atelectatic lung. The PEEP-induced O2 deficit was eliminated with inversion to the RLD posture.  相似文献   

17.
This research investigated whether stretching of lung tissue due to increased positive alveolar pressure swings during mechanical ventilation (MV) at various tidal volumes (V(T)) might affect the composition and/or structure of the glycosaminoglycan (GAG) components of pulmonary extracellular proteoglycans. Experiments were performed in 30 healthy rats: 1) anesthetized and immediately killed (controls, C-0); 2) anesthetized and spontaneously breathing for 4 h (C-4h); and 3) anesthetized, paralyzed, and mechanically ventilated for 4 h with air at 0-cmH(2)O end-expiratory pressure and V(T) of 8 ml/kg (MV-1), 16 ml/kg (MV-2), 24 ml/kg (MV-3), or 32 ml/kg (MV-4), adjusting respiratory rates at a minute ventilation of 270 ml/min. Compared with C-0 and C-4h, a significant reduction of dynamic and static compliance of the respiratory system and of the lung was observed only in MV-4, while extravascular lung water significantly increased in MV-3 and MV-4, but not in MV-1 and MV-2. However, even in MV-1, MV induced a significant fragmentation of pulmonary GAGs. Extraction of covalently bound GAGs and wash out of loosely bound or fragmented GAGs progressively increased with increasing V(T) and was associated with increased expression of local (matrix metalloproteinase-2) and systemic (matrix metalloproteinase-9) activated metalloproteases. We conclude that 1) MV, even at "physiological" low V(T), severely affects the pulmonary extracellular architecture, exposing the lung parenchyma to development of ventilator-induced lung injury; and 2) respiratory mechanics is not a reliable clinical tool for early detection of lung injury.  相似文献   

18.
The evaluation of airway resistance (R(aw)) in conscious mice requires both end-expiratory (V(e)) and tidal volumes (V(t)) (Lai-Fook SJ and Lai YL. J Appl Physiol 98: 2204-2218, 2005). In anesthetized BALB/c mice we measured lung area (A(L)) from ventral-to-dorsal x-ray images taken at FRC (V(e)) and after air inflation with 0.25 and 0.50 ml (DeltaV(L)). Total lung volume (V(L)) described by equation: V(L) = DeltaV(L) + V(FRC) = KA(L)(1.5) assumed uniform (isotropic) inflation. Total V(FRC) averaged 0.55 ml, consisting of 0.10 ml tissue, 0.21 ml blood and 0.24 ml air. K averaged 1.84. In conscious mice in a sealed box, we measured the peak-to-peak box pressure excursions (DeltaP(b)) and x-rays during several cycles. K was used to convert measured A(L)(1.5) to V(L) values. We calculated V(e) and V(t) from the plot of V(L) vs. cos(alpha - phi). Phase angle alpha was the minimum point of the P(b) cycle to the x-ray exposure. Phase difference between the P(b) and V(L) cycles (phi) was measured from DeltaP(b) values using both room- and body-temperature humidified box air. A similar analysis was used after aerosol exposures to bronchoconstrictor methacholine (Mch), except that phi depended also on increased R(aw). In conscious mice, V(e) (0.24 ml) doubled after Mch (50-125 mg/ml) aerosol exposure with constant V(t), frequency (f), DeltaP(b), and R(aw). In anesthetized mice, in addition to an increased V(e), repeated 100 mg/ml Mch exposures increased both DeltaP(b) and R(aw) and decreased f to apnea in 10 min. Thus conscious mice adapted to Mch by limiting R(aw), while anesthesia resulted in airway closure followed by diaphragm fatigue and failure.  相似文献   

19.
During breathing under sedation via a two-way valve, airflow (V), volume (delta V), and airway pressure (P) were recorded in eight normal (N) infants, seven with reversible obstructive airway disease (ROAD), and seven with chronic lung disease (CLD). Intermittently, expiratory volume clamping (EVC) was applied, involving selective occlusion of the expiratory valve for three to five breaths. The latter produced cumulative increases in delta V that, due to progressive recruitment of the Hering-Breuer reflex, were accompanied by increasing expiratory plateaus in P (i.e., apneas). The resultant passive inflation delta V-P relationships were closely approximated by the expression: delta V = aP2 + bP + c, wherein a represented the pressure-related changes in chord compliance (Crs), b the Crs at P = 0, and c the difference between the dynamic end-expiratory and relaxation volumes of the respiratory system. Relative to N, the ROAD and CLD infants had significantly reduced weight-specific values of a/kg, their b/kg values were increased, whereas the c/kg measurements did not significantly vary. Moreover, for each subject we determined the net Crs/kg obtaining at P = 20 cmH2O (i.e., Crs20/kg), an estimate of the net deflation compliance; the passive respiratory time constant (tau rs) based on the slope of the expired delta V/V relationship; and the respiratory system conductance (Grs/kg). Relative to N, the mean Crs20/kg was significantly reduced only in the infants with CLD and, due to increases in tau rs, both patient groups depicted significantly diminished values of Grs/kg, suggesting the presence of airways obstruction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Dynamics of breathing in the hypoxic awake lamb   总被引:1,自引:0,他引:1  
Newborn mammals respond to hypoxia with an immediate hyperventilation that is rapidly dampened. Changes in mechanical properties of the respiratory system during hypoxia have been considered an important reason for this fall in minute ventilation (VE). We have studied the dynamic mechanical behavior of the respiratory system in eight unanesthetized intact newborn lambs (mean age 2 days) during normoxia and hypoxia (FIO2 = 0.08). Mouth pressure (P), airflow (V), and volume (V) were recorded while lambs were breathing through a leak-proof face mask and a pneumotachograph. Active compliance (C') and resistance (R') of the respiratory system were computed from P developed during an inspiratory effort against airway closure at end expiration and V and V of the preceding breaths. Tidal expiratory V-V curves were analyzed to estimate the elevation in functional residual capacity (FRC) over resting volume (Vr). After hypoxia, there was an immediate increase in VE in the first 2 min, from 0.49 to 1.13 l.kg-1.min-1, followed by a rapid decrease to 0.80. After 8 min of hypoxia, C' was unchanged. The inspiratory R' decreased during hypoxia, probably reflecting a drop in inspiratory laryngeal resistance. The expiratory V-V curves during hypoxia showed considerable braking, often with a double peak in expiratory V. This pattern was only occasionally seen during normoxia. In animals with a linear segment of the expiratory V-V curves the FRC-Vr difference could be calculated and averaged 1.93 ml/kg during normoxia and 3.47 during hypoxia. The recoil P of the respiratory system at end expiration was 0.75 cmH2O during normoxia vs. 1.63 cmH2O during hypoxia (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号