首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pretreatment of mouse mast cells with 10(-7) to 10(-6) M dexamethasone (DM) during overnight sensitization with mouse IgE antibody resulted in inhibition of antigen-induced histamine release and degranulation. The inhibition of both degranulation and histamine release increased linearly with the duration of the treatment; maximal inhibition was obtained after approximately 16 hr with DM. The addition of DM to sensitized mast cells immediately before antigen challenge did not affect the antigen-induced histamine release. DM interacted directly with mast cells by binding to DM-specific cytoplasmic receptors. The treatment of mast cells with DM did not affect the binding of IgE to mast cells or intracellular cAMP levels. Bridging of cell-bound IgE anti-DNP antibody on mouse mast cells either by multivalent DNP-HSA or by anti-IgE induced phospholipid methylation at the plasma membrane and Ca++ influx into the cells. Pretreatment of mast cells with DM inhibited the antigen-induced phospholipid methylation and Ca++ uptake but failed to affect histamine release by Ca++ ionophore A23187. The results suggest that DM treatment inhibits histamine release by the inhibition of the early stage of biochemical processes leading to opening Ca++ channels but does not affect the process distal to Ca++ influx or the binding of IgE molecules to IgE receptors.  相似文献   

2.
Mast cells were obtained by long term culture of rat thymus cells on rat embryonic fibroblast monolayers. Pure mast cell preparations obtained culture were incubated with 125I-labeled rat E myeloma protein to study receptors for IgE on their surface. When the cells were obtained after 35 to 45 days culture, the average number of receptors per mast cell was 100,000 to 400,000. An equilibrium constant of the binding reaction between their receptor and rat IgE was in the order of 108 M-1. The histamine content of the cultured mast cells was 0.2 to 5 mug/106 cells. The measurement of histamine content in mast cells recovered after different periods of culture suggested that the histamine content increased with maturation. Even after 45 to 50 days culture, the histamine content of cultured mast cells was significantly lower than that in rat peritoneal mast cells. The cultured mast cells were passively sensitized in vitro with rat IgE antibody against Nippostrongylus brasiliensis. The sensitized cells released histamine upon incubation with the antigen. It was also found that cultured mast cells released histamine upon exposure to compound 48/80. These results indicated that cultured mast cells have physiologic functions similar to those of normal rat mast cells, but they have not reached full maturation.  相似文献   

3.
In this study, we investigated the effect of Amomum xanthiodes (Zingiberaceae) extract (AXE) on the mast cell-mediated allergy model and studied the possible mechanism of action. We found that AXE inhibited compound 48/80-induced systemic reactions and plasma histamine release in mice. Additionally, AXE decreased immunoglobulin E (IgE)-mediated local allergic reactions and passive cutaneous anaphylaxis (PCA), and AXE dose-dependently attenuated the release of histamine from rat peritoneal mast cells (RPMC) activated by compound 48/80 or IgE. The amounts of AXE needed for inhibition of compound 48/80-induced plasma histamine release and PCA were similar to disodium cromoglycate, the known anti-allergic drug. We found that AXE increased the cAMP levels and decreased the compound 48/80-induced intracellular Ca2+. Furthermore, AXE attenuated the phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore (A23187)-stimulated tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 secretion in human mast cells. The inhibitory effect of AXE on the proinflammatory cytokines was nuclear factor-kappaB (NF-kappaB)-dependent. In addition, AXE decreased PMA plus A23187-induced degradation of IkappaBalphaand the nuclear translocation of NF-kappaB. Our findings provide evidence that AXE inhibits mast cell-derived immediate-type allergic reactions, and that cAMP, intracellular Ca2+, proinflammatory cytokines, and NF-kappaB are involved in these effects.  相似文献   

4.
A mAb that reacts with the high affinity IgE-R on the rat basophilic leukemia cells (RBL-2H3) was used to inhibit allergic reactions. In vitro, the intact mAb BA3 and its Fab fragment inhibited radiolabeled IgE binding to the RBL-2H3 cells. The mAb binds to the IgE-R with a higher affinity than does IgE. Whereas the intact mAb released histamine from the RBL-2H3 cells, the Fab was inactive. The addition of the Fab fragments to RBL-2H3 inhibited the IgE-mediated histamine release reaction. The Fab fragments also inhibited in vivo passive cutaneous reactions in rats when injected intradermally either before or after IgE. The injection of the mAb Fab i.v. before the injection of the IgE into the skin sites also inhibited reactions, although it was less effective. The results demonstrate that anti-R antibodies can be used as a model for inhibiting immediate hypersensitivity reactions.  相似文献   

5.
The concentration of IgE in the serum of Sprague-Dawley rats increased after infection with Nippostrongylus brasiliensis (NB). The IgE concentration in normal rats was less than 1 mug/ml. After re-infection with NB, the concentration increased in 100 to 300 mug/ml. Mast cells were purified from peritoneal cells of both normal and NB-infected animals. Purified mast cells from the infected animals released histamine upon exposure to NB antigen. The antibody specific for IgE released histamine from purified mast cells of both normal and infected animals. Dose-reponse curves of histamine release suggested that mast cells from NB-infected animals bear more IgE molecules than normal mast cells. Binding of 125I-labeled rat E myeloma protein with normal mast cells was demonstrated by autoradiography. Under the same experimental conditions, mast cells of infected animals were not labeled with 125I-IgE. Mast cells from both normal and infected animals failed to combine 125I-labeled IgG. The number of IgE molecules bound per mast cell was determined by incubating 125I-labeled IgE with purified mast cells. When mast cells were incubated incubated in 0.6 to 2 mug/ml of IgE, the number of IgE molecules combined with the mast cells from infected animals was about 10% of that bound with normal mast cells. The results indicated that a large proportion of IgE receptors on mast cells of infected animals was occupied by their own IgE. No significant difference was observed between normal mast cells and those of infected animals with respect to histamine content and intracellular levels of cyclic nucleotides.  相似文献   

6.
The Tec family tyrosine kinase, IL-2-inducible T cell kinase (Itk), is expressed in T cells and mast cells. Mice lacking Itk exhibit impaired Th2 cytokine secretion; however, they have increased circulating serum IgE, but exhibit few immunological symptoms of allergic airway responses. We have examined the role of Itk in mast cell function and FcepsilonRI signaling. We report in this study that Itk null mice have reduced allergen/IgE-induced histamine release, as well as early airway hyperresponsiveness in vivo. This is due to the increased levels of IgE in the serum of these mice, because the transfer of Itk null bone marrow-derived cultured mast cells into mast cell-deficient W/W(v) animals is able to fully rescue histamine release in the W/W(v) mice. Further analysis of Itk null bone marrow-derived cultured mast cells in vitro revealed that whereas they have normal degranulation responses, they secrete elevated levels of cytokines, including IL-13 and TNF-alpha, particularly in response to unliganded IgE. Analysis of biochemical events downstream of the FcepsilonRI revealed little difference in overall tyrosine phosphorylation of specific substrates or calcium responses; however, these cells express elevated levels of NFAT, which was largely nuclear. Our results suggest that the reduced mast cell response in vivo in Itk null mice is due to elevated levels of IgE in these mice. Our results also suggest that Itk differentially modulates mast cell degranulation and cytokine production in part by regulating expression and activation of NFAT proteins in these cells.  相似文献   

7.
IgE-mediated release of histamine from human cutaneous mast cells   总被引:1,自引:0,他引:1  
We investigated the ability of antigen-IgE interactions to stimulate histamine release from human infant cutaneous mast cells. Skin obtained at circumcision contained numerous perivascular mast cells, as assessed by light and electron microscopy. The histamine content of this tissue averaged 17.7 ng (+/- 1.5 SEM)/mg wet weight. Challenge of 200-microns thick sections of unsensitized skin with varying concentrations of monoclonal murine antibodies to human IgE caused no net release of histamine. After skin sections were incubated in the presence of 5 micrograms/ml of human myeloma IgE (S) for 120 min at 37 degrees C, monoclonal anti-IgE challenge resulted in 40.1% (+/- 6.0 SEM) histamine release. Similar passive sensitization with 1/20 dilutions of serum from humans expressing IgE to purified Juniperus sabinoides (JS) antigen rendered the tissue responsive to specific antigen challenge. Dose-related histamine release occurred over 30 min with optimal release of 12.6% (+/- 2.4 SEM) after stimulation with 100 ng/ml of JS antigen. This reaction required sensitization with serum containing IgE to JS and was antigen-specific. Optimal reactions to antigen occurred at 3 mM added Ca++, 34 degrees C to 37 degrees C, pH 7.2. Antigen-induced release was markedly influenced by the added Ca++ concentration; no release occurred in the absence of Ca++, 54% of the optimal response was observed at 2 mM Ca++, and 28% of the optimal response occurred at 4 mM Ca++. The addition of Mg++ did not influence antigen-induced release. The results of this study provide functional evidence that 1) human infant cutaneous mast cells express Fc-epsilon receptors; 2) these receptors are largely unoccupied in vivo; and 3) stimulation of passively sensitized infant mast cells with anti-IgE or specific antigen leads to immediate histamine release. This new system should permit detailed in vitro studies of immediate hypersensitivity reactions in human skin.  相似文献   

8.
Fluorescent and biotinylated analogs of mast cell degranulating (MCD) peptide were synthesized and the labels fluoresceinisothiocyanate and N-hydroxysuccinimidobiotin were conjugated at position 1 in the MCD peptide sequence. The analogs with these moieties retained histamine-releasing activity as high as that of the parent MCD peptide in rat peritoneal mast cell assays. These labeled analogs were used in rat basophilic leukemia cells (RBL-2H3) to demonstrate by confocal microscopy and flow cytometry the specific binding of MCD peptide to mast cell receptors. Consequently MCD peptide was found to compete with and inhibit the binding of fluorescent IgE on RBL cells as monitored by flow cytometry. Thus MCD peptide may prove to be useful in the study of IgE receptor-bearing cells.  相似文献   

9.
Antiallergic effects of Vitis amurensis on mast cell-mediated allergy model   总被引:1,自引:0,他引:1  
In this study, we investigated the effect of the methanol extract of fruits of Vitis amurensis Rupr. (Vitaceae; MEVA) on the mast cell-mediated allergy model and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases, such as asthma and sinusitis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. MEVA inhibited compound 48/80-induced systemic reactions and serum histamine release in a dose-dependent manner in mice. MEVA decreased immunoglobulin E (IgE)-mediated local allergic reactions, passive cutaneous anaphylaxis. MEVA dose-dependently reduced histamine release from mast cells activated by compound 48/80 or IgE. The inhibitory effect of MEVA on histamine release was mediated by the modulation of intracellular calcium. In addition, MEVA attenuated the phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-stimulated secretion of tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-8 in human mast cells. The inhibitory effect of MEVA on these proinflammatory cytokines was p38 mitogen-activated protein kinase and nuclear factor-kappaB (NF-kappaB) dependent. Our findings provide evidence that MEVA inhibits mast cell-derived, immediate-type allergic reactions and involvement of proinflammatory cytokines, p38 MAPK, and NF-kappaB in these effects.  相似文献   

10.
In this study we investigated the effects of long wave ultraviolet light (UVA) and various doses of protoporphyrin (PP) on the release of histamine from rat peritoneal and cutaneous mast cells. We also correlated these results with morphologic characteristics and viability of the cells. PP at a dose of 30 ng/ml plus UVA-induced negligible histamine release from rat peritoneal mast cells (RPMC), but was able to suppress the ability of the cells to release histamine in response to subsequent exposure to the calcium ionophore A23187, compound 48/80, or the combination of Ag and IgE. This functional change was associated with an increase in cell size, and cell lysis that gradually occurred during 24 h in culture. PP at a dose of 3 ng/ml plus UVA also significantly inhibited secretogogue-induced histamine release from rat peritoneal mast cells, but this dose was not associated with significant changes in morphology or viability. These various effects of PP plus UVA were also observed with mast cell preparations obtained by the enzymatic dispersion of rat skin. The suppression of secretogogue-induced histamine release in rat peritoneal mast cells treated with PP (3 ng/ml) and UVA could not be reversed by culturing the cells in the dark for 24 h in the absence of PP. Unlike the direct cytotoxic histamine releasing action of high doses of PP plus UVA, the suppressive effect of low PP doses could not be inhibited by catalase, but could be reduced by the absence of calcium. Our results indicate that PP plus UVA has dual effects on mast cells, apparently involving distinct mechanisms. This implies the possibility that PP and UVA at appropriate doses could be used in photochemotherapy of mast cell-mediated skin diseases.  相似文献   

11.
Antibodies against receptor molecules for IgE on rat basophilic leukemic (RBL) cells were prepared by immunization of a rabbit with immune precipitates composed of IgE-receptor complexes and anti-IgE. Antibodies against cell surface components were specifically purified by using RBL cells and rendered specific for mast cells by appropriate absorption. The major antibodies in the final preparation (anti-RBL) were directed against receptor molecules. It was found that the F(ab')2 fragments of anti-RBL induced histamine release from rat mast cells and caused immediate skin reactions in normal rats. These reactions by anti-RBL or its F(ab')2 fragments were inhibited if the receptors on mast cells had been saturated with IgE. The Fab' fragments of anti-RBL could bind with receptors on RBL cells and blocked passive sensitization of mast cells with IgE antibodies, but failed to induce skin reactions and histamine release from normal mast cells. Sensitization of normal rat skin with the Fab' fragment followed by an i.v. injection of anti-rabbit IgG induced skin reactions. The results indicated that bridging of receptor molecules by divalent anti-receptor antibody triggered mast cells for histamine release.  相似文献   

12.
IgE-dependent histamine release from rat mesenteric mast cells was investigated. Excised mesenterium was cut into pieces and incubated with IgE overnight at 4 degrees C for sensitization. Over 10 pieces of mesenterium specimen could be prepared from a rat. Antigen-induced histamine release from mesenterium specimen was initiated rapidly and reached a plateau in 5 min. In an optimal condition, over 50% of total histamine was released. In contrast, unpurified and purified peritoneal mast cells released only 22.5% and 5.3% of total histamine, respectively, upon IgE stimulation. Tranilast, a mast cell stabilizer, inhibited the histamine release from mesenteric mast cells significantly. The mesenterium might be useful material for studying tissue-associated mast cell activation.  相似文献   

13.
The aim of the study was to analyse the effect of interleukin-4 (IL-4) on allergen and anti-IgE mediated histamine release from basophils and human skin mast cells and to assess whether soluble recombinant interleukin-4 receptor (sIL4R) can inhibit these effects. Anti-IgE stimulated histamine release from peripheral blood basophils and mast cells of atopic donors was enhanced after preincubation with IL-4, whereas after preincubation with sIL-4R it was inhibited. These effects were even more pronounced when samples were stimulated with a clinically relevant allergen. In IL-4 preincubated skin mast cells, there was a similar enhancement of anti-IgE stimulated histamine release, which could again be inhibited by sIL-4R. The effects of IL-4 and sIL4R were dose- and time-dependent. Mice sensitized to ovalbumin and treated with soluble recombinant murine sIL-4R showed significantly reduced immediate-type cutaneous hypersensitivity responses compared with untreated mice. These in vivo effects were IgE independent, since there were no significant differences in total and allergen specific IgE/IgG1 antibody titres between treated and untreated mice. This indicates that IL4 exerts priming effects on histamine release by effector cells of the allergic response and that these effects are potently antagonized by soluble IL-4R both in vitro and in vivo.  相似文献   

14.
Cultured murine mastocytoma (AB-CBF1-MCT-1) cells were stimulated to release endogenous or incorporated histamine or serotonin by an IgE-mediated mechanisms without loss of viability. Stimulation was achieved by incubation of the cells with rat IgE-anti-IgE, rat IgE-anti-light chain, fluoresceinated rat IgE-anti-fluorescein, IgE-enriched mouse anti-ovalbumin-ovalbumin, or covalently linked dimers of rat IgE, at doses similar to those optimal for normal peritoneal mast cells. Active cell metabolism and Ca++ were required to obtain release. Despite the latter, no dose of the calcium ionophore, A23187, could be found which caused release without concomitant cytotoxicity. Phosphatidylserine did not enhance release.  相似文献   

15.
TGF-beta1 is a member of a family of polypeptide factors that control proliferation, differentiation, chemotaxis, and other functions in many cell types. TGF-beta1 has been shown to inhibit many immunologic functions. However, here we report that TGF-beta1 has an important role in the elicitation of IgE-dependent allergic reactions. The synthetic antisense TGF-beta1 oligonucleotides dose-dependently inhibit passive cutaneous anaphylaxis (PCA) reaction and histamine release from the mast cells activated by anti-DNP IgE in rats. The level of cAMP in mast cells, when antisense TGF-beta1 oligonucleotides was added, significantly increased approximately 7-fold compared with that of basal cells. The antisense TGF-beta1 oligonucleotides also had a significant inhibitory effect on anti-DNP IgE-induced TNF-alpha release from mast cells. In situ hybridization analysis showed that the PCA reaction sites treated with antisense TGF-beta1 oligonucleotides exhibited no detectable levels of TGF-beta1 and L-histidine decarboxylase mRNA after anti-DNP IgE stimulation, whereas the PCA reaction sites treated with sense TGF-beta1 oligonucleotides possessed significant amounts of their mRNA. Additionally, neutralizing Ab to TGF-beta1 blocked the PCA reaction significantly, but its Ab did not inhibit peritoneal mast cell-released histamine upon treatment with anti-DNP IgE. Our results suggest that TGF-beta1 is critical to the development of IgE-dependent anaphylaxis reactions.  相似文献   

16.
Pretreatment of rat peritoneal mast cells, human basophils, bone marrow-derived mouse mast cells (BMMC) and mouse mast cell line PT-18 cells with 1 microgram/ml pertussis toxin (PT) failed to inhibit immunoglobulin E (IgE)-dependent histamine release from the cells. In BMMC and PT-18 cells, even 20-hr incubation of the cells with 1 microgram/ml PT, which ADP-ribosylates more than 97% of 41 kDa, alpha-subunit of Ni in the cells, failed to affect the IgE-dependent release of histamine or arachidonate. The results indicate that GTP-binding protein, Ni, is not involved in the transduction of triggering signals induced by cross-linking of IgE receptors. In contrast, pretreatment of rat mast cells with 1 ng/ml to 0.1 microgram/ml PT for 2 hr inhibited histamine release induced by compound 48/80 in a dose-dependent manner. A similar pretreatment with PT inhibited thrombin-induced histamine release from BMMC and N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced histamine release from human basophils in a similar dose-dependent fashion. However, even 20 hr of incubation of sensitized BMMC with 1 microgram/ml PT failed to inhibit either thrombin-induced or antigen-induced breakdown of phosphatidylinositides (PI), i.e., the formation of inositol triphosphate and diacylglycerol, Quin-2 signal, and the release of arachidonic acid. The results indicate that the inhibition of thrombin-induced histamine release by PT-treatment is not due to the inhibition of PI-turnover, and that Ni is not involved in thrombin-induced or antigen-induced (IgE-dependent) hydrolysis of phosphatidylinositides in mast cells.  相似文献   

17.
The intracerebroventricular administration of compound 48/80 or polymixin B to rats 0 to 60 days old, produced a decrease both in the histamine which sediments in the crude nuclear fraction, as well as in the number of mast cells in the brain. In contrast, the histamine-releasers did not affect histamine levels in subcellular fractions where neuronal histamine is found. Once released, histamine disappeared rapidly (t 1/2 = 3.8 min). In untreated animals and in those treated with histamine releasers, the number of mast cells/g in the whole brains of developing rats and in the cerebral regions of adult rats showed a close correlation with the histamine levels in the crude nuclear fraction. The content of histamine per mast cell in adult rat brain was estimated to be about 13 pg/cell. Histologic examination of the subcellular fractions revealed the presence of intact mast cells in the crude nuclear fraction obtained from untreated animals, and of degranulated mast cells in the same fraction obtained from animals treated with histamine releasers. The mast cell contribution to adult rat brain histamine levels was about 22%. Our results strongly support that most of the histamine which sediments in the crude nuclear fraction of the rat brain is located in mast cells. Determination of histamine in the crude nuclear fraction and in the supernatant of this fraction is proposed as an easy way for identifying the cellular pool altered by any treatment affecting brain histamine levels.  相似文献   

18.
An effort was made to discover mast cell degranulating (MCD) peptide analogs that bind with high affinity to mast cell receptors without triggering secretion of histamine or other mediators of the allergic reaction initiated by immunoglobulin E (IgE) after mast cell activation. Such compounds could serve as inhibitors of IgE binding to mast cell receptors. An alanine scan of MCD peptide reported previously showed that the analog [Ala12]MCD was 120-fold less potent in histamine-releasing activity and fivefold more potent in binding affinity to mast cell receptors than the parent MCD peptide. Because this analog showed marginal intrinsic activity and good binding affinity it was subsequently tested in the present study as an IgE inhibitor. In contrast to MCD peptide, [Ala12]MCD showed a 50% inhibition of IgE binding to the Fc epsilon RI alpha mast cell receptor by using rat basophilic leukemia (RBL-2H3) mast cells and fluorescence polarization. Furthermore, in a beta-hexosaminidase secretory assay, the peptide also showed a 50% inhibition of the secretion of this enzyme caused by IgE. An attempt was made to relate structural changes and biologic differences between the [Ala12]MCD analog and the parent MCD peptide. The present results show that [Ala12]MCD may provide a base for designing agents to prevent IgE/Fc epsilon RI alpha interactions and, consequently, allergic conditions.  相似文献   

19.
N Inagaki  T Miura  H Nagai  A Koda 《Life sciences》1992,51(21):PL201-PL205
Antiallergic mechanisms of beta-adrenergic stimulants were investigated in rats. Isoproterenol administered intravenously inhibited IgE antibody-mediated homologous passive cutaneous anaphylaxis (PCA) and histamine-induced cutaneous reaction (HCR) elicited at the same time in the same rats significantly. The inhibition of PCA was more potent than that of HCR, suggesting that PCA is inhibited by at least 2 mechanisms. One is the inhibition of vascular permeability increase. In vivo histamine release in the rat peritoneal cavity caused by intravenous antigen was inhibited by the intravenous administration of isoproterenol or salbutamol dose-dependently. On the contrary, when the histamine release in the peritoneal cavity was caused by intraperitoneal antigen, isoproterenol or salbutamol administered simultaneously with antigen failed to inhibit the reaction. Furthermore, antigen-induced histamine release from sensitized peritoneal exudate cells in vitro was not inhibited by isoproterenol or salbutamol. These results indicate that the primary target of beta-adrenergic stimulants is the vascular endothelium, and that the direct inhibition of chemical mediator release from mast cells does not play an important role for the inhibition of PCA and in vivo histamine release in the peritoneal cavity in rats. Beta-adrenergic stimulants therefore may prevent intravenously administered antigen from activating sensitized mast cells through affecting endothelial cells.  相似文献   

20.
Stimulation of normal rat splenic T cells with pertussigen (lymphocytosis-promoting factor from Bordetella pertussis) resulted in the release of a soluble factor that enhanced the assembly of N-linked oligosaccharides to IgE-binding factors during their biosynthesis. The glycosylation-enhancing factor (GEF) is a kallikrein-like enzyme and is purified by absorption to p-aminobenzamidine-Agarose followed by elution with benzamidine. Incubation of normal mouse mast cells with affinity-purified GEF or bradykinin, a product of cleavage of kininogen by kallikrein, resulted in the release of histamine and arachidonate from the cells. Passive sensitization of mast cells with mouse IgE antibody, followed by pretreatment of the cells with a suboptimal concentration of GEF, resulted in an enhancement of antigen-induced histamine release. It was found that GEF and bradykinin induced the same biochemical events in mast cells as those induced by bridging of IgE receptors. Both GEF and bradykinin induced phospholipid methylation and an increase in intracellular cyclic AMP (cAMP). Incorporation of 3H-methyl groups into phospholipids and intracellular cAMP levels both reached a maximum 30 sec after challenge with GEF or bradykinin, and then declined to base-line levels within 2 to 3 min. These biochemical events were followed by 45Ca influx and histamine release; 45Ca uptake reached a plateau value at 2 min, and histamine release reached a maximum at 5 to 8 min. The initial rise in cAMP induced by GEF (or bradykinin) was not inhibited by indomethacin, indicating that the activation of adenylate cyclase is not the result of prostaglandin synthesis. In both IgE-mediated and GEF-induced histamine release, inhibitors of methyltransferases, such as 3-deaza adenosine and L-homocysteine thiolactone, inhibited not only phospholipid methylation but also the cAMP rise and subsequent Ca2+ uptake and histamine release. The results indicate that GEF induces activation of methyltransferases and that phospholipid methylation is involved in the cAMP rise, Ca2+ uptake, and histamine release. The induction of the same biochemical events in the same sequence by bridging of IgE receptors and by GEF (bradykinin) supports the hypothesis that receptor bridging induces the activation of serine protease(s) and cleavage products of this enzyme in turn activate methyltransferases in mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号