首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine 5-triphosphate receptors are known to be involved in fast excitatory postsynaptic currents in myenteric neurons of the digestive tract. In the present study, the distribution of P2X2 and P2X3 receptor mRNA was examined by in situ hybridisation while P2X2 and P2X3 receptor protein was localised by immunohistochemical methods. In addition, P2X2 and P2X3 receptors were colocalised with calbindin and calretinin in the myenteric and submucosal plexus. P2X2- and P2X3-immunoreactive neurons were found in the myenteric and submucosal plexuses throughout the entire length of the rat digestive tract from the stomach to the colon. Approximately 60%, 70% and 50% of the ganglion cells in the myenteric plexus of the gastric corpus, ileum and distal colon, and 56% and 45% in the submucosal plexus of the ileum and distal colon, respectively, showed positive immunoreactivity to the P2X2 receptor. Approximately 10%, 2% and 15% of the ganglion cells in the myenteric plexus of the gastric corpus, ileum and distal colon, and 62% and 40% in the submucosal plexus of the ileum and distal colon, respectively, showed positive immunoreactivity to the P2X3 receptor. Double-labelling studies showed that about 10–25% of the neurons with P2X2 immunoreactivity in myenteric plexus and 30–50% in the submucosal plexus were found to express calbindin or calretinin. About 80% of the neurons with P2X3 receptor immunoreactivity in the myenteric plexus and about 40% in the submucosal plexus expressed calretinin. Approximately 30–75% of the neurons with P2X3 receptor immunoreactivity in the submucosal plexus expressed calbindin, while none of them were found to express calbindin in the myenteric plexus.  相似文献   

2.
Development of neurones and fibres expressing P2X3 receptors in the myenteric plexus of rat stomach and coexistence of the P2X3 receptor with calbindin, calretinin and NOS during postnatal development, were investigated with immunostaining methods. Extrinsic nerves expressing P2X3 receptors appeared as early as E12 and were localised in the trunk and branches of the vagus nerve, which extended rapidly onto the whole rat stomach from E12 to E14. Intrinsic neurone cell bodies with P2X3-immunoreactivity in the myenteric ganglia were first demonstrated postnatally at P1, and at P14, when the number of neurones expressing the P2X3 receptor peaked at 45%. P2X3 receptor-immunoreactivity decreased subsequently, and at P60 only about 11% were P2X3-immunoreactive. Intraganglionic laminar nerve endings and intramuscular arrays were first demonstrated postnatally at P1 and P7, respectively. In the early postnatal days, there were many growth cone-like structures with strong P2X3 immunostaining associated with these endings and arrays. Double-immunostaining showed that 9–15% of P2X3-immunoreactive neurones in the gastric myenteric plexus expressed calbindin D-28 k only in the early postnatal days, while 14–21% of neurones from P1 to P60 increasingly expressed calretinin. About 20% of neurones with P2X3 immunoreactivity coexpressed NOS throughout perinatal development.  相似文献   

3.
The distribution of P2Y2 receptor-immunoreactive (ir) neurons and fibers and coexistence of P2Y2 with P2X2 and P2X3 receptors, neuropeptide Y (NPY), calretinin (CR), calbindin (CB) and nitric oxide synthase (NOS) was investigated with immunostaining methods. The results showed that P2Y2-ir neurons and fibers were distributed widely in myenteric and submucous plexuses of the guinea pig stomach corpus, jejunum, ileum and colon. The typical morphology of P2Y2-ir neurons was a long process with strong positive staining on the same side of the cell body. The P2Y2-ir neurons could be Dogiel type 1. About 40–60% P2X3-ir neurons were immunoreactive for P2Y2 in the myenteric plexus and all the P2X3-ir neurons expressed the P2Y2 receptor in the submucosal plexus; almost all the NPY-ir neurons and the majority of CR-ir neurons were also immunoreactive for P2Y2, especially in the myenteric plexus of the small intestine; no P2Y2-ir neurons were immunoreactive for P2X2 receptors, CB and NOS. It is shown for the first time that S type/Dogiel type 1 neurons with fast P2X and slow P2Y receptor-mediated depolarizations could be those neurons expressing both P2Y2-ir and P2X3-ir and that they are widely distributed in myenteric and submucosal plexuses of guinea pig gut.  相似文献   

4.
The colocalization, number, and size of various classes of enteric neurons immunoreactive (IR) for the purinergic P2X2 and P2X7 receptors (P2X2R, P2X7R) were analyzed in the myenteric and submucosal plexuses of control, undernourished, and re-fed rats. Pregnant rats were exposed to undernourishment (protein-deprivation) or fed a control diet, and their offspring comprised the following experimental groups: rats exposed to a normal diet throughout gestation until postnatal day (P)42, rats protein-deprived throughout gestation and until P42, and rats protein-deprived throughout gestation until P21 and then given a normal diet until P42. Immunohistochemistry was performed on the myenteric and submucosal plexuses to evaluate immunoreactivity for P2X2R, P2X7R, nitric oxide synthase (NOS), choline acetyltransferase (ChAT), calbindin, and calretinin. Double-immunohistochemistry of the myenteric and submucosal plexuses demonstrated that 100% of NOS-IR, calbindin-IR, calretinin-IR, and ChAT-IR neurons in all groups also expressed P2X2R and P2X7R. Neuronal density increased in the myenteric and submucosal plexuses of undernourished rats compared with controls. The average size (profile area) of some types of neurons in the myenteric and submucosal plexuses was smaller in the undernourished than in the control animals. These changes appeared to be reversible, as animals initially undernourished but then fed a normal diet at P21 (re-feeding) were similar to controls. Thus, P2X2R and P2X7R are present in NOS-positive inhibitory neurons, calbindin- and calretinin-positive intrinsic primary afferent neurons, cholinergic secretomotor neurons, and vasomotor neurons in rats. Alterations in these neurons during undernourishment are reversible following re-feeding.  相似文献   

5.
The distribution of P2Y6 and P2Y12 receptor-immunoreactive (ir) neurons and fibers and their coexistence with calbindin, calretinin and nitric oxide synthase (NOS) has been investigated with single and double labeling immunostaining methods. The results showed that 30–36% of the ganglion cells in the myenteric plexus are strongly P2Y6 receptor-ir neurons; they are distributed widely in the myenteric plexus of stomach, jejunum, ileum and colon, but not in the submucosal plexus, with a typical morphology of multipolar neurons with a long axon-like process. About 42–46% of ganglion cells in both the myenteric and submucosal plexuses show P2Y12 receptor-ir. About 28–35% of P2Y6 receptor-ir neurons were found to coexist with NOS and 41–47% of them coexist with calretinin, but there was no coexistence of P2Y6 receptor-ir with calbindin. In contrast, all P2Y12 receptor-ir neurons were immunopositive for calbindin, although occasionally P2Y12 receptor-ir neurons without calbindin immunoreactivity were found, while none of the P2Y12 receptor-ir neurons were found to coexist with calretinin or NOS in the gastrointestinal system of guinea pig. The P2Y12 receptor-ir neurons coexpressing calbindin-ir in the small intestine are Dogiel type II/AH, intrinsic primary afferent neurons.  相似文献   

6.
The P2X(2) subtype of purine receptor was localised by immunohistochemistry to nerve cells of the myenteric ganglia of the stomach, small and large intestines of the guinea-pig, and nerve cells of submucosal ganglia in the intestine. Nerve cells with strong and with weak immunoreactivity could be distinguished. Immunoreactivity in both strongly and weakly immunoreactive neurons was absorbed with P2X(2) receptor peptide. In the myenteric plexus, strong immunoreactivity was in nitric oxide synthase (NOS)- and in calbindin-immunoreactive neurons. In all regions, over 90% of NOS-immunoreactive neurons were strongly P2X(2) receptor immunoreactive. The intensity of reaction varied in calbindin neurons; in the ileum, 90% were immunoreactive for the receptor, about one-third having a strong reaction. In the submucosal ganglia, all vasoactive intestinal peptide-immunoreactive neurons were P2X(2) receptor immunoreactive, but there was no receptor immunoreactivity of calretinin or neuropeptide Y neurons. Varicose nerve fibres with P2X(2) receptor immunoreactivity were found in the gastric myenteric ganglia. These fibres disappeared after vagus nerve section. It is concluded that the P2X(2) receptor is expressed by specific subtypes of enteric neurons, including inhibitory motor neurons, non-cholinergic secretomotor neurons and intrinsic primary afferent neurons, and that the receptor also occurs on the endings of vagal afferent fibres in the stomach.  相似文献   

7.
Expression of P2X4 and P2X6 receptor subunits in the gastrointestinal tract of the rat was studied with double-labeling fluorescence immunohistochemistry. The results showed that P2X6 receptors were expressed widely in the submucosal and myenteric plexuses. In the myenteric plexus, P2X6 receptors were expressed mainly in large size neurons which resembled Dogiel type II neurons. These P2X6 receptor-immunoreactive (ir) neurons also expressed calbindin 28K, calretinin and neuronal nuclei (NeuN), proteins that are markers of intrinsic sensory neurons. In the submucosal plexus, all the calbindin 28K, calretinin and NeuN-ir cells were immunoreactive for P2X6 receptors. P2X6 receptors do not form homomultimers, but rather heteromultimers with either P2X2 or P2X4 receptors. P2X4 receptors were not expressed in neurons, but were expressed in macrophages of the rat gastrointestinal tract. These data indicate that P2X6 receptors are mainly expressed on intrinsic sensory neurons and that ATP, via P2X6 receptors probably in heteromeric combination with P2X2 receptors, may be involved in regulating the physiological functions of these neurons.  相似文献   

8.
The neurochemical composition of nerve fibres and cell bodies in the myenteric plexus of the proventriculus, stomach and small and large intestines of the golden hamster was investigated by using immunohistochemical and histochemical techniques. In addition, the procedures for localising nitric-oxide-utilising neurones by histochemical (NADPH-diaphorase) and immunohistochemical (nitric oxide synthase) methods were compared. The co-localisation of vasoactive intestinal polypeptide and nitric oxide synthase in the myenteric plexus of all regions of the gut was also assessed. The results demonstrated the presence of nerve fibres and nerve cell bodies immunoreactive to protein gene product, vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, tyrosine hydroxylase, 5-hydroxytryptamine and nitric oxide synthase in all regions of the gastrointestinal tract examined. The pattern of distribution of immunoreactive nerve fibres and nerve cell bodies containing the above markers was found to vary in different regions of the gut. Myenteric neurones and nerve fibres containing immunoreactivity to nitric oxide synthase and NADPH-diaphorase reactivity, however, were shown to have an identical distribution throughout the gut. In contrast to some studies on the guinea-pig and rat, the co-existence of vasoactive intestinal polypeptide and nitric oxide synthase was seen in only a small population of myenteric neurones.  相似文献   

9.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   

10.
It was hypothesised that P2X(3) receptors, predominantly labelling spinal and cranial sensory ganglionic neurons, are also expressed in intrinsic sensory enteric neurons, although direct evidence is lacking. The aim of this study was to localise P2X(3) receptors in the enteric nervous system of the guinea-pig ileum, and to neurochemically identify the P2X(3)-expressing neurons. In the submucous plexus, cholinergic neurons expressing calretinin (CRT), were immunostained for P2X(3). These neurons made up about 12% of the submucous neurons. In the myenteric plexus, approximately 36% of the neurons expressed P2X(3). Half of the latter neurons were immunoreactive for CRT, whereas about 20% were immunoreactive for nitric oxide synthase (NOS). Based on earlier neurochemical analysis of enteric neurons in the guinea-pig, the myenteric neurons exhibiting P2X(3)/CRT immunoreactivity were identified as longitudinal muscle motor neurons, and those expressing P2X(3)/NOS immunoreactivity as short inhibitory circular muscle motor neurons. In both plexuses, no colocalisation was observed between P2X(3) and calbindin, a marker for intrinsic sensory neurons. Multiple staining with antisera raised against somatostatin, neuropeptide Y, substance P or neurofilament protein did not reveal any costaining. It can be concluded that in the guinea-pig ileum, intrinsic sensory neurons do not express P2X(3) receptors. However, this does not negate the possibility that extrinsic sensory nerves expressing P2X(3) are involved in a purinergic mechanosensory transduction pathway as demonstrated in other organs.  相似文献   

11.
Calbindin immunoreactivity of enteric neurons in the guinea-pig ileum   总被引:4,自引:0,他引:4  
Previous studies have identified Dogiel type II neurons with cell bodies in the myenteric plexus of guinea-pig ileum to be intrinsic primary afferent neurons. These neurons also have distinctive electrophysiological characteristics (they are AH neurons) and 82-84% are immunoreactive for calbindin. They are the only calbindin-immunoreactive neurons in the plexus. Neurons with analogous shape and electrophysiology are found in submucosal ganglia, but, with antibodies used in previous studies, they lack calbindin immunoreactivity. An antiserum that is more effective in revealing calbindin in the guinea-pig enteric nervous system has been reported recently. In the present work, we found that this antiserum reveals the same population that was previously identified in myenteric ganglia, and does not reveal any further population of myenteric nerve cells. In submucosal ganglia, 9-10% of nerve cells were calbindin immunoreactive with this antiserum. The submucosal neurons with calbindin immunoreactivity were also immunoreactive for choline acetyltransferase, but not for neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP). Small calbindin-immunoreactive neurons (average profile 130 microm2) were calretinin immunoreactive, whereas the large calbindin-immunoreactive neurons (average profile 330 microm2) had tachykinin (substance P) immunoreactivity. Calbindin immunoreactivity was seen in about 50% of the calretinin neurons and 40% of the tachykinin-immunoreactive submucosal neurons. It is concluded that, in the guinea-pig ileum, only one class of myenteric neuron, the AH/Dogiel type II neuron, is calbindin immunoreactive, but, in the submucosal ganglia, calbindin immunoreactivity occurs in cholinergic, calretinin-immunoreactive, secretomotor/vasodilator neurons and AH/Dogiel type II neurons.  相似文献   

12.
13.
The motility patterns of the reticulorumen evoke mainly mixing of the ingesta. So far unknown, intrinsic neural circuits of the enteric nervous system are involved in the control of these motility patterns. The aim of the study was to characterize neurochemically sheep ruminal myenteric neurones, in particular the neural pathways innervating the ruminal muscle layers. Cell bodies within the myenteric plexus projecting to the longitudinal or circular muscle layer were retrogradely labelled by direct application of the fluorescent tracer 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI) onto the circular or longitudinal muscle. The neurochemical code of myenteric neurones was identified by their immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). According to their neurochemical code, ruminal myenteric neurones were divided into three populations: ChAT/SP (68% of all myenteric neurones), NOS/VIP (26% of all myenteric neurones) and ChAT/- (5% of all myenteric neurones). Application of DiI onto the circular or longitudinal muscle revealed on average 64 or 44 labelled cell bodies in the myenteric plexus, respectively. DiI-labelled neurones expressed the code ChAT/SP or NOS/VIP. In the pathways to circular or longitudinal muscle, ChAT/SP-positive neurones outnumbered NOS/VIP-immunoreactive neurones by 5:1 and 2:1. Pathways to the circular or longitudinal muscle did not exhibit any pronounced polarized innervation patterns. This study demonstrated specific projections of myenteric neurones to the ruminal muscle. Neurones expressing the code ChAT/SP might function as excitatory muscle motor neurones, whereas NOS/VIP neurones are likely to act as inhibitory muscle motor neurones.  相似文献   

14.
Antibodies against choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) were used to determine whether neurons that have previously been identified as intrinsic primary afferent neurons in the guinea-pig small intestine have a cholinergic phenotype. Cell bodies of primary afferent neurons in the myenteric plexus were identified by their calbindin immunoreactivity and those in the submucous plexus by immunoreactivity for substance P. High proportions of both were immunoreactive for ChAT, viz. 98% of myenteric calbindin neurons and 99% of submucosal substance P neurons. ChAT immunoreactivity also occurred in all nerve cell bodies immunoreactive for calretinin and substance P in the myenteric plexus, but in only 16% of nerve cells immunoreactive for nitric oxide synthase. VAChT immunoreactivity was in the majority of calbindin-immunoreactive varicosities in the myenteric ganglia, submucous ganglia and mucosa and also in the majority of the varicosities of neurons that were immunoreactive for calretinin and somatostatin and that had been previously established as being cholinergic. We conclude that the intrinsic primary afferent neurons are cholinergic and that they may release transmitter from their sensory endings in the mucosa.  相似文献   

15.
The presence and distribution of P2Y (nucleotide) receptor subtypes in rat sensory neurons has been investigated. RT-PCR showed that P2Y1, P2Y2, P2Y4 and P2Y6 receptor mRNA is expressed in sensory ganglia [dorsal root ganglion (DRG), nodose ganglion (NG) and trigeminal ganglion (TG)]. The regional and cellular distribution of P2Y1 and P2Y4 receptor proteins in these ganglia was investigated using immunohistochemistry. P2Y1 polyclonal antibodies stained over 80% of the sensory neurons, particularly the small-diameter (neurofilament-negative) neurons. The P2Y4 receptor antibody stained more medium- and large- (neurofilament-positive) diameter neurons than small-diameter neurons. P2Y1 and P2Y4 receptor immunoreactivity (P2Y1-IR and P2Y4-IR) was often coexpressed with P2X3 receptor immunoreactivity (P2X3-IR) in subpopulations of neurons. Double immunohistochemistry showed that 73–84% of P2X3 receptor-positive neurons also stained for the P2Y1 receptor in DRG, TG and NG while only 25–35% also stained for the P2Y4 receptor. Subpopulations of P2Y1-IR neurons were coexpressed with NF200, CGRP and IB4; most P2Y4-IR neurons were coexpressed with NF200, while only a few neurons were coexpressed with CGRP (10–20%) or with IB4 (1–2%). The results suggest that P2Y as well as P2X receptor subtypes contribute to purinergic signalling in sensory ganglia.  相似文献   

16.
The architecture and neurochemistry of the enteric nervous system was studied by use of whole-mount preparations obtained by microdissection of the horse jejunum. A myenteric plexus and two plexuses within the submucosa were identified. The external submucosal plexus lying in the outermost region of the submucosa had both neural and vascular connections with the inner submucosal plexus situated closer to the mucosa. Counts of neurones stained for NADH-diaphorase demonstrated the wide variation in size, shape and neurone content of individual ganglia in both the external and internal submucosal plexuses. The average number of cells/ganglion was similar in each plexus (about 25 cells). Immunoreactivities for galanin, vasoactive intestinal peptide and neuropeptide Y were observed in nerve cell bodies and fibres of each of the plexuses. Immunoreactivity for substance P was extensive and strong in nerve fibres of all plexuses but was weaker in cell bodies of the submucosal neurones and absent in the cell bodies of the myenteric plexus. Comparative quantitative analysis of immunoreactive cell populations with total cell numbers (enzyme staining) was indicative of neuropeptide colocalization in the external submucosal plexus.  相似文献   

17.
Summary Immunoreactivity for calretinin, a calcium-binding protein, was studied in neurones in the guinea-pig small intestine. 26±1% of myenteric neurones and 12±3% of submucous neurones were immunoreactive for calretinin. All calretinin-immunoreactive neurones were also immunoreactive for choline acetyltransferase and hence are likely to be cholinergic. In the myenteric plexus, two subtypes of Dogiel type-I calretinin-immunoreactive neurones could be distinguished from their projections and neurochemical coding. Some calretinin-immunoreactive myenteric neurones had short projections to the tertiary plexus, and hence are likely to be cholinergic motor neurones to the longitudinal muscle. Some of these cells were also immunoreactive for substance P. The remaining myenteric neurones, immunoreactive for calretinin, enkephalin, neurofilament protein triplet and substance P, are likely to be orad-projecting, cholinergic interneurones. Calretinin immunoreactivity was also found in cholinergic neurones in the submucosa, which project to the submucosal vasculature and mucosal glands, and which are likely to mediate vasodilation. Thus, calretinin immunoreactivity in the guinea-pig small intestine is confined to three functional classes of cholinergic neurones. It is possible, for the first time, to distinguish these classes of cells from other enteric neurones.  相似文献   

18.
Fos expression was used to assess whether the proinflammatory cytokine interleukin-1beta (IL-1beta) activated specific, chemically coded neuronal populations in isolated preparations of guinea pig ileum and colon. Whether the effects of IL-1beta were mediated through a prostaglandin pathway and whether IL-1beta induced the expression of cyclooxygenase (COX)-2 was also examined. Single- and double-labeling immunohistochemistry was used after treatment of isolated tissues with IL-1beta (0.1-10 ng/ml). IL-1beta induced Fos expression in enteric neurons and also in enteric glia in the ileum and colon. For enteric neurons, activation was concentration-dependent and sensitive to indomethacin, in both the myenteric and submucosal plexuses in both regions of the gut. The maximum proportion of activated neurons differed between the ileal (approximately 15%) and colonic (approximately 42%) myenteric and ileal (approximately 60%) and colonic (approximately 75%) submucosal plexuses. The majority of neurons activated in the myenteric plexus of the ileum expressed nitric oxide synthase (NOS) or enkephalin immunoreactivity. In the colon, activated myenteric neurons expressed NOS. In the submucosal plexus of both regions of the gut, the majority of activated neurons were vasoactive intestinal polypeptide (VIP) immunoreactive. After treatment with IL-1beta, COX-2 immunoreactivity was detected in the wall of the gut in both neurons and nonneuronal cells. In conclusion, we have found that the proinflammatory cytokine IL-1beta specifically activates certain neurochemically defined neural pathways and that these changes may lead to disturbances in motility observed in the inflamed bowel.  相似文献   

19.
The substance P neurokinin 1 receptor (NK1R) regulates motility, secretion, inflammation and pain in the intestine. The distribution of the NK1R is a key determinant of the functional effects of substance P in the gut. Information regarding the distribution of NK1R in subtypes of mouse enteric neurons is lacking and is the focus of the present study. NK1R immunoreactivity (NK1R-IR) is examined in whole-mount preparations of the mouse distal colon by indirect immunofluorescence and confocal microscopy. The distribution of NK1R-IR within key functional neuronal subclasses was determined by using established neurochemical markers. NK1R-IR was expressed by a subpopulation of myenteric and submucosal neurons; it was mainly detected in large multipolar myenteric neurons and was colocalized with calcitonin gene-related peptide, neurofilament M, choline acetyltransferase and calretinin. The remaining NK1R-immunoreactive neurons were positive for nitric oxide synthase. NK1R was expressed by most of the submucosal neurons and was exclusively co-expressed with vasoactive intestinal peptide, with no overlap with choline acetyltransferase. Treatment with substance P resulted in the concentration-dependent internalisation of NK1R from the cell surface into endosome-like structures. Myenteric NK1R was mainly expressed by intrinsic primary afferent neurons, with minor expression by descending interneurons and inhibitory motor neurons. Submucosal NK1R was restricted to non-cholinergic secretomotor neurons. These findings highlight key differences in the neuronal distribution of NK1R-IR between the mouse, rat and guinea-pig, with important implications for the functional role of NK1R in regulating intestinal motility and secretion.  相似文献   

20.
Summary Neuromedin U immunoreactivity was located histochemically in the guinea-pig small intestine. Projections of immunoreactive neurons were determined by analysing patterns of degeneration following nerve lesions. The co-localization of neuromedin U immunoreactivity with immunoreactivity for substance P, neuropeptide Y, vasoactive intestinal peptide and calbindin was also investigated. Neuromedin U immunoreactivity was found in nerve cells in the myenteric and submucous plexuses and in nerve fibres in these ganglionated plexuses, around submucous arterioles and in the mucosa. Reactive fibres did not supply the muscle layers. Most reactive nerve cells in the myenteric ganglia had Dogiel type-II morphology and in many there was co-localization of calbindin, although some Dogiel type-II neuromedin U neurons were calbindin negative. Lesion studies suggest that these myenteric neurons project circumferentially to local myenteric ganglia. Projections from myenteric neurons also run anally in the myenteric plexus, while other projections extend to submucous ganglia, and still further projections run from the intestine to provide terminals in the coeliac ganglia. In the submucous ganglia neuromedin U was co-localized in three populations of nerve cells: (i) those with vasoactive intestinal peptide immunoreactivity, (ii) neurons containing neuropeptide Y, and (iii) neurons containing substance P. Each of these populations sends nerve fibres to the mucosa. Neuromedin U immunoreactivity is thus located in a variety of neurons serving different functions in the intestine and therefore probably does not have a single role in intestinal physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号