首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmentally important genes have recently been linked to tissue regeneration and epithelial cell repair in neonatal and adult animals in several organs, including liver, skin, prostate, and musculature. We hypothesized that developmentally important genes play roles in lung injury repair in adult mice. Although there is considerable information known about these processes, the specific molecular pathways that mediate injury and regulate tissue repair are not fully elucidated. Using a hyperoxic injury model to study these mechanisms of lung injury and tissue repair, we selected the following genes based upon their known or putative roles in lung development and organogenesis: TTF-1, FGF9, FGF10, BMP4, PDGF-A, VEGF, Ptc, Shh, Sca-1, BCRP, CD45, and Cyclin-D2. Our findings demonstrate that several developmentally important genes (Sca-1, Shh, PDGF-A, VEGF, BCRP, CD45, BMP4, and Cyclin-D2) change during hyperoxic injury and normoxic recovery in mice, suggesting that adult lung may reactivate key developmental regulatory pathways for tissue repair. The mRNA for one gene (TTF-1), unchanged during hyperoxia, was upregulated late in recovery phase. These novel findings provide the basis for testing the efficacy of post-injury lung repair in animals genetically modified to inactivate or express individual molecules.  相似文献   

2.
FGF signaling in the invertebrate model systems Drosophila melanogaster and Caenorhabditis elegans was initially most obviously involved in cell motility events. More recently, however, FGFs and FGF signaling in these systems have been shown to affect many additional cellular processes. This recent work has shown that the pleiotropies of these FGF receptors resemble those of their vertebrate counterparts, and, in many cases, serve as excellent models for understanding the fundamental molecular mechanisms controlling these events.  相似文献   

3.
Alzheimer's disease (AD) is characterized with senile plaques formed by Aβ deposition, and neurofibrillary tangles composed of hyperphosphorylated tau protein, which ultimately lead to cognitive impairment. Despite the heavy economic and life burdens faced by the patients with AD, effective treatments are still lacking. Previous studies have reported the neuroprotective effects of FGF10 in CNS diseases, but its role in AD remains unclear. In this study, we demonstrated that FGF10 levels were reduced in the serum of AD patients, as well as in the brains of 3xTg-AD mice and APPswe-transfected HT22 cells, suggesting a close relationship between FGF10 and AD. Further investigations revealed that intranasal delivery of FGF10 improved cognitive functions in 3xTg-AD mice. Additionally, FGF10 treatment reduced tau hyperphosphorylation and neuronal apoptosis, thereby mitigating neuronal cell damage and synaptic deficits in the cortex and hippocampus of 3xTg-AD mice, as well as APPswe-transfected HT22 cells. Furthermore, we evaluated the therapeutic potential of FGF10 gene delivery for treating AD symptoms and pathologies. Tail vein delivery of the FGF10 gene using AAV9 improved cognitive and neuronal functions in 3xTg-AD mice. Similarly, endogenous FGF10 overexpression ameliorated tau hyperphosphorylation and neuronal apoptosis in the cortex and hippocampus of 3xTg-AD mice. Importantly, we confirmed that the FGFR2/PI3K/AKT signaling pathway was activated following intranasal FGF10 delivery and AAV9-mediated FGF10 gene delivery in 3xTg-AD mice and APPswe-transfected HT22 cells. Knockdown of FGFR2 attenuated the protective effect of FGF10. Collectively, these findings suggest that intranasal delivery of FGF10 and AAV9-mediated FGF10 gene delivery could be a promising disease-modifying therapy for AD.  相似文献   

4.
Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modes.  相似文献   

5.
FGF receptor 2 isoform IIIb (FGFR2b), originally discovered as a receptor for FGF7, is known to be an important receptor in vertebrate morphogenesis, because FGFR2b null mice exhibit agenesis or dysgenesis of various organs, which undergo budding and branching morphogenesis. Since FGF7 null mice do not exhibit marked defects in organogenesis, it has been considered that other FGF(s) than FGF7 might function as a major ligand for FGFR2b during organogenesis. One of the candidate ligands is FGF10, because FGF10 binds to FGFR2b with high affinity and the formation of the limb and lung is arrested in FGF10 null mice as found in FGFR2b-deficient mice. Previous analyses of FGF10 null mice revealed that FGF10 is required for limb and lung development. To elucidate the role of FGF10 in wide-range organogenesis, we further analyzed the phenotypes of the FGF10 knockout mice. We found diverse phenotypes closely related to those for FGFR2b-deficient mice, which includes the absence of thyroid, pituitary, and salivary glands, while minor defects were observed in the formation of teeth, kidneys, hair follicles, and digestive organs. These results suggest that FGF10 acts as a major ligand for FGFR2b in mouse multi-organ development.  相似文献   

6.
7.
Requirements for FGF3 and FGF10 during inner ear formation   总被引:8,自引:0,他引:8  
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.  相似文献   

8.
FGFs (fibroblast growth factors) play major roles in a number of developmental processes. Recent studies of several human disorders, and concurrent analysis of gene knock-out and properties of the corresponding recombinant proteins have shown that FGFs and their receptors are prominently involved in the development of the skeletal system in mammals. We have compared the sequences of the nine known mammalian FGFs, FGFs from other vertebrates, and three additional sequences that we extracted from existing databases: two human FGF sequences that we tentatively designated FGF10 and FGF11, and an FGF sequence from C?norhabditis elegans. Similarly, we have compared the sequences of the four FGF receptor paralogs found in chordates with four non-chordate FGF receptors, including one recently identified in C. elegans. The comparison of FGF and FGF receptor sequences in vertebrates and nonvertebrates shows that the FGF and FGF receptor families have evolved through phases of gene duplications, one of which may have coincided with the emergence of vertebrates, in relation with their new system of body scaffold. Received: 6 April 1996 / Accepted: 5 July 1996  相似文献   

9.
Proteoglycans (PGs) have been shown to play a key role in the development of many tissues. We have investigated the role of sulfated PGs in early rat lung development by treating cultured tissues with 30 mM sodium chlorate, a global inhibitor of PG sulfation. Chlorate treatment disrupted growth and branching of embryonic day 13 lung explants. Isolated lung epithelium (LgE) migrated toward and invaded lung mesenchyme (LgM), and chlorate irreversibly suppressed this response. Chlorate also inhibited migration of LgE toward beads soaked in FGF10. Chlorate severely decreased branching morphogenesis in tissue recombinants consisting of LgM plus either LgE or tracheal epithelium (TrE) and decreased expression of surfactant protein C gene (SP-C). Chlorate also reduced bone morphogenetic protein-4 expression in cultured tips and recombinants but had no effect on the expression of clara cell 10-kDa protein (CC10), sonic hedgehog (Shh), FGF10, and FGF receptor 2IIIb. Chlorate reduced the growth of LgE in mesenchyme-free culture but did not affect SP-C expression. In contrast, chlorate inhibited both rudiment growth and the induction of SP-C in mesenchyme-free cultured TrE. Treatment of lung tips and tissue recombinants with chondroitinase ABC abolished branching morphogenesis. Chondroitinase also suppressed growth of TrE in mesenchyme-free culture. Chondroitinase treatment, however, had no effect on the induction of SP-C expression in any of these cultures. These results demonstrate the overall importance of sulfated PGs to normal lung development and demonstrate a dynamic role for chondroitin sulfate PGs in embryonic lung growth and morphogenesis.  相似文献   

10.
哺乳动物在早期胚胎发育过程中,肺发育经历了气管分支的形态发生、树样结构上皮管道的形成,并伴随着血管的发育而发生的气体通路和肺泡的分化等过程.肺发生涉及到许多复杂的分子机制.肺形态学的变化受到一系列持家基因、激素、核转录因子、生长因子及其他因素的综合调控.目前已经发现决定肺分支形态发生的许多重要因子.本文根据目前最新研究进展,阐述了小鼠胚胎肺在分支形态发生过程中,上皮与间充质之间诱导的信号通路之间的相互作用及其对呼吸树形态建成的调控机制.  相似文献   

11.
Heparan sulfate-FGF10 interactions during lung morphogenesis   总被引:3,自引:0,他引:3  
Signaling by fibroblast growth factor 10 (FGF10) through FGFR2b is essential for lung development. Heparan sulfates (HS) are major modulators of growth factor binding and signaling present on cell surfaces and extracellular matrices of all tissues. Although recent studies provide evidence that HS are required for FGF-directed tracheal morphogenesis in Drosophila, little is known about the HS role in FGF10-mediated bud formation in the vertebrate lung. Here, we mapped HS expression in the early lung and we investigated how HS interactions with FGF10-FGFR2b influence lung morphogenesis. Our data show that a specific set of HS low in O-sulfates is dynamically expressed in the lung mesenchyme at the sites of prospective budding near Fgf10-expressing areas. In turn, highly sulfated HS are present in basement membranes of branching epithelial tubules. We show that disrupting endogenous gradients of HS or altering HS sulfation in embryonic lung culture systems prevents FGF10 from inducing local responses and markedly alters lung pattern formation and gene expression. Experiments with selectively sulfated heparins indicate that O-sulfated groups in HS are critical for FGF10 signaling activation in the epithelium during lung bud formation, and that the effect of FGF10 in pattern is in part determined by regional distribution of O-sulfated HS. Moreover, we describe expression of a HS 6-O-sulfotransferase preferentially at the tips of branching tubules. Our data suggest that the ability of FGF10 to induce local budding is critically influenced by developmentally regulated regional patterns of HS sulfation.  相似文献   

12.
13.
PPARalpha is a key regulator of hepatic FGF21   总被引:8,自引:0,他引:8  
The metabolic regulator fibroblast growth factor 21 (FGF21) has antidiabetic properties in animal models of diabetes and obesity. Using quantitative RT-PCR, we here show that the hepatic gene expression of FGF21 is regulated by the peroxisome proliferator-activated receptor alpha (PPARalpha). Fasting or treatment of mice with the PPARalpha agonist Wy-14,643 induced FGF21 mRNA by 10-fold and 8-fold, respectively. In contrast, FGF21 mRNA was low in PPARalpha deficient mice, and fasting or treatment with Wy-14,643 did not induce FGF21. Obese ob/ob mice, known to have increased PPARalpha levels, displayed 12-fold increased hepatic FGF21 mRNA levels. The potential importance of PPARalpha for FGF21 expression also in human liver was shown by Wy-14,643 induction of FGF21 mRNA in human primary hepatocytes, and PPARalpha response elements were identified in both the human and mouse FGF21 promoters. Further studies on the mechanisms of regulation of FGF21 by PPARalpha in humans will be of great interest.  相似文献   

14.
The arborescent architecture of mammalian conductive airways results from the repeated branching of lung endoderm into surrounding mesoderm. Subsequent lung's striking geometrical features have long raised the question of developmental mechanisms involved in morphogenesis. Many molecular actors have been identified, and several studies demonstrated the central role of Fgf10 and Shh in growth and branching. However, the actual branching mechanism and the way branching events are organized at the organ scale to achieve a self-avoiding tree remain to be understood through a model compatible with evidenced signaling. In this paper we show that the mere diffusion of FGF10 from distal mesenchyme involves differential epithelial proliferation that spontaneously leads to branching. Modeling FGF10 diffusion from sub-mesothelial mesenchyme where Fgf10 is known to be expressed and computing epithelial and mesenchymal growth in a coupled manner, we found that the resulting laplacian dynamics precisely accounts for the patterning of FGF10-induced genes, and that it spontaneously involves differential proliferation leading to a self-avoiding and space-filling tree, through mechanisms that we detail. The tree's fine morphological features depend on the epithelial growth response to FGF10, underlain by the lung's complex regulatory network. Notably, our results suggest that no branching information has to be encoded and that no master routine is required to organize branching events at the organ scale. Despite its simplicity, this model identifies key mechanisms of lung development, from branching to organ-scale organization, and could prove relevant to the development of other branched organs relying on similar pathways.  相似文献   

15.
Recent studies have shown that persistent expression of FGF10 in the developing pancreas of transgenic mice results in enhanced and prolonged proliferation of pancreatic progenitors, pancreatic hyperplasia and impaired pancreatic differentiation. These studies have also suggested that FGF10 prevents the differentiation of pancreatic progenitors by maintaining persistent Notch signalling. Here, we provide experimental evidence sustaining the capacity of FGF10 to induce the proliferation of pancreatic precursors, while preventing their differentiation. Using explant cultures of E10.5 isolated dorsal pancreatic epithelium, we found that FGF10 maintained Notch activation and induced the expansion of pancreatic precursors while blocking their differentiation. In addition, by using a gamma-secretase inhibitor, we were able to down-regulate the expression of Hes1, a target gene of the Notch pathway in explant cultures of pancreatic epithelium treated with FGF10. In such explants, the effect of FGF10 on the proliferation and maintenance of pancreatic progenitors was suppressed. These results demonstrate that activation of the Notch pathway is required as a downstream mediator of FGF10 signalling in pancreatic precursor cells.  相似文献   

16.
Fibroblast growth factor 10 (FGF10) is required for embryonic epidermal morphogenesis including brain development, lung morphogenesis, and initiation of limb bud formation. In this study, we investigated the role of FGF10 as a lead induction factor for stem cell differentiation toward urothelial cell. To this end, human multipotent stem cell in vitro system was employed. Human amniotic fluid stem cells were co-cultured with immortalized bladder cancer lines to induce directed differentiation into urothelial cells. Urothelial markers, uroplakin II, III, and cytokeratin 8, were monitored by RT-PCR, immunocytochemistry, and Western blot analysis. Co-cultured stem cells began to express uroplakin II, III, and cytokeratin 8. Targeted FGF10 gene knockdown from bladder cancer cells abolished the directed differentiation. In addition, when FGF10 downstream signaling was blocked with the Mek inhibitor, the co-culture system lost the capacity to induce urothelial differentiation. Exogenous addition of recombinant FGF10 protein promoted stem cell differentiation into urothelium cell lineage. Together, this report suggests that paracrine FGF10 signaling stimulates the differentiation of human stem cell into urothelial cells. Current study provides insight into the potential role of FGF10 as a lead growth factor for bladder regeneration and its therapeutic application for bladder transplantation.  相似文献   

17.
The molecular mechanisms underlying the development of the external genitalia in mammals have been very little examined. Recent gene knockout studies have suggested that the developmental processes of its anlage, the genital tubercle (GT), have much in common with those of limb buds. The Fgf genes have been postulated as regulating several downstream genes during organogenesis. Fgf8 was expressed in the distal urethral plate epithelium of the genital tubercle (GT) together with other markers such as the Msx1, Fgf10, Hoxd13 and Bmp4 expressed in the mesenchyme. To analyze the role of the FGF system during GT formation, an in vitro organ culture system was utilized. It is suggested that the distal urethral plate epithelium of GT, the Fgf8-expressing region, regulates the outgrowth of GT. Ectopic application of FGF8 beads to the murine GT induced mesenchymal gene expression, and also promoted the outgrowth of the GT. Experiments utilizing anti-FGF neutralizing antibody suggested a growth-promoting role for FGF protein(s) in GT outgrowth. In contrast, despite its vital role during limb-bud formation, Fgf10 appears not to be primarily essential for initial outgrowth of GT, as extrapolated from Fgf10(-/-) GTs. However, the abnormal external genitalia development of Fgf10(-/-) perinatal mice suggested the importance of Fgf10 in the development of the glans penis and the glans clitoridis. These results suggest that the FGF system is a key element in orchestrating GT development.  相似文献   

18.
Cafestol, a diterpene present in unfiltered coffee brews such as Scandinavian boiled, Turkish, and cafetière coffee, is the most potent cholesterol-elevating compound known in the human diet. Several genes involved in cholesterol homeostasis have previously been shown to be targets of cafestol, including cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid biosynthesis. We have examined the mechanism by which cafestol elevates serum lipid levels. Changes in several lipid parameters were observed in cafestol-treated APOE3Leiden mice, including a significant increase in serum triglyceride levels. Microarray analysis of these mice identified alterations in hepatic expression of genes involved in lipid metabolism and detoxification, many of which are regulated by the nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor (PXR). Further studies demonstrate that cafestol is an agonist ligand for FXR and PXR, and that cafestol down-regulates expression of the bile acid homeostatic genes CYP7A1, sterol 12alpha-hydroxylase, and Na(+)-taurocholate cotransporting polypeptide in the liver of wild-type but not FXR null mice. Cafestol did not affect genes known to be up-regulated by FXR in the liver of wild-type mice, but did increase expression of the positive FXR-target genes intestinal bile acid-binding protein and fibroblast growth factor 15 (FGF15) in the intestine. Because FGF15 has recently been shown to function in an enterohepatic regulatory pathway to repress liver expression of bile acid homeostatic genes, its direct induction in the gut may account for indirect effects of cafestol on liver gene expression. PXR-dependent gene regulation of cytochrome P450 3A11 and other targets by cafestol was also only seen in the intestine. Using a double FXR/PXR knockout mouse model, we found that both receptors contribute to the cafestol-dependent induction of intestinal FGF15 gene expression. In conclusion, cafestol acts as an agonist ligand for both FXR and PXR, and this may contribute to its impact on cholesterol homeostasis.  相似文献   

19.
Regulation of fibroblast growth factor-23 signaling by klotho   总被引:20,自引:0,他引:20  
The aging suppressor gene Klotho encodes a single-pass transmembrane protein. Klotho-deficient mice exhibit a variety of aging-like phenotypes, many of which are similar to those observed in fibroblast growth factor-23 (FGF23)-deficient mice. To test the possibility that Klotho and FGF23 may function in a common signal transduction pathway(s), we investigated whether Klotho is involved in FGF signaling. Here we show that Klotho protein directly binds to multiple FGF receptors (FGFRs). The Klotho-FGFR complex binds to FGF23 with higher affinity than FGFR or Klotho alone. In addition, Klotho significantly enhanced the ability of FGF23 to induce phosphorylation of FGF receptor substrate and ERK in various types of cells. Thus, Klotho functions as a cofactor essential for activation of FGF signaling by FGF23.  相似文献   

20.
FGF8 has been shown to play important morphoregulatory roles during embryonic development. The observation that craniofacial, cardiovascular, pharyngeal, and neural phenotypes vary with Fgf8 gene dosage suggests that FGF8 signaling induces differences in downstream responses in a dose-dependent manner. In this study, we investigated if FGF8 plays a dose-dependent regulatory role during embryonic submandibular salivary gland (SMG) morphogenesis. We evaluated SMG phenotypes of Fgf8 hypomorphic mice, which have decreased Fgf8 gene function throughout embryogenesis. We also evaluated SMG phenotypes of Fgf8 conditional mutants in which Fgf8 function has been completely ablated in its expression domain in the first pharyngeal arch ectoderm from the time of arch formation. Fgf8 hypomorphs have hypoplastic SMGs, whereas conditional mutant SMGs exhibit ontogenic arrest followed by involution and are absent by E18.5. SMG aplasia in Fgf8 ectoderm conditional mutants indicates that FGF8 signaling is essential for the morphogenesis and survival of Pseudoglandular Stage and older SMGs. Equally important, the presence of an initial SMG bud in Fgf8 conditional mutants indicates that initial bud formation is FGF8 independent. Mice heterozygous for either the Fgf8 null allele (Fgf8(+/N)) or the hypomorphic allele (Fgf8(+/H)) have SMGs that are indistinguishable from wild-type (Fgf8(+/+)) mice which suggest that there is not only an FGF8 dose-dependent phenotypic response, but a nonlinear, threshold-like, epistatic response as well. We also found that enhanced FGF8 signaling induced, and abrogated FGF8 signaling decreased, SMG branching morphogenesis in vitro. Furthermore, since FGF10 and Shh expression is modulated by Fgf8 levels, we postulated that exogenous FGF10, Shh, or FGF10 + Shh peptide supplementation in vitro would largely "rescue" the abnormal SMG phenotype associated with decreased FGF8 signaling. This is as expected, though there is no synergistic effect with FGF10 + Shh peptide supplementation. These in vitro experiments model the principle that mutations have different effects in the context of different epigenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号