首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The composition of Ficus sp. and Musanga leo‐errerae in Chimpanzees’ diet was investigated by faecal analysis and direct observation in the medium altitude forest of Kalinzu, along the albertine rift, south‐western Uganda. The fruit availability of Ficus species showed significant variations while that of Musanga leo‐errerae was consistent and significantly higher than that of Ficus (P = 0.053; t = ?2.034) all year round. Their consumption was not opportunistic as no correlation existed between their fruit abundance and their occurrence in chimpanzee faecal samples/diet (Musanga leo‐errerae: r = 0.153, P = 0.456; Ficus sp.: r = 0.039, P = 0.848). Results showed that Musanga leo‐errerae and Ficus species seeds occurred in 80.2% and 67.2% respectively of the total 2635 chimpanzee faecal samples analyzed. Although there was no significant difference between chimpanzees party size that fed on Musanga leo‐errerae and Ficus tree species, the rate of consumption was significantly different in the low (t = 3.835; P = 0.031) than the high fruiting season (t = 2.379; P = 0.063). Ficus sp. and Musanga leo‐errerae genera function as coexistent keystone fruits for chimpanzees because they perfectly complement each other in terms of chimpanzees’ sustenance. This information has significant implications in the management of tropical forests like Kibale, Budongo, Bwindi Impenetrable, Gombe and Mahale inhabited by primate populations especially the endangered ones like the chimpanzee.  相似文献   

2.
We studied seasonal change in habitat use by chimpanzees in the Kalinzu Forest, Uganda. The forest comprises various types of vegetation. For each vegetation type, we compared number of chimpanzees (per km2) that used the vegetation with fruit availability in different census periods. We estimated the number of chimpanzees by nest count and fruit availability via density of fallen fruit. The mixed mature forest contained a large amount of fruit during the high-fruiting season, but it decreased rapidly in the low-fruiting season. The number of chimpanzees also decreased in mixed mature forest in approximate proportion with fruit availability. In the Parinari-dominated mature and secondary forests, both fruit availability and number of chimpanzees were very low throughout the study. In the Musanga-dominated secondary forest, the number of chimpanzees increased toward the low-fruiting season, though the fruit availability decreased slightly. A multiple regression analysis showed that various fruits had significant effects on the number of chimpanzees during the high-fruiting season, while only Musanga leo-errerae had a significant effect during the low-fruiting season. The results suggest that the fruit of Musanga leo-errerae functions as a fallback food, and a combination of different vegetation types supports the chimpanzees in the Kalinzu Forest.  相似文献   

3.
This paper reports on the phenological patterns of figs in Budongo Forest, Uganda, and how it relates to chimpanzee food availability in different seasons. In addition, we analysed the dung of chimpanzees to understand the composition of fruits in their diet. The aim of our study was to assess Ficus phenology and how it affects chimpanzee diet. Fifteen species of figs were monitored for fruit (syconium) and leaf phenology between June 2000 and 2001. Ficus fruit production varied significantly between and within species, and also with tree trunk and crown diameters. Fig fruit production was asynchronous and individual fig trees produced crops from one to five times in a year. In addition to fruits, chimpanzees fed on young leaves of some Ficus species. Shedding of old Ficus leaves coincided with the dry season, followed by appearance of young leaves. The dry season in Budongo is a period of general fruit scarcity. The combination of fig fruits and young leaves make up the most important food in the diet of chimpanzees. From the chimpanzee dung, more than 78% of seeds comprised fig ‘seeds’ (nutlets) and the rest of the diaspores were from other tree species. Our findings suggest that chimpanzees disperse large number of diaspores in their dung, thereby serving as important agents of natural forest regeneration.  相似文献   

4.
The diet of chimpanzees was investigated by direct observations, feeding remains, and fecal analysis from January 1994 to December 2000 in the montane forest of Kahuzi-Biega National Park. A total of 171 food items were identified, among which 156 items were plant materials belonging to 114 species from 57 taxonomic families. Chimpanzees consumed 66 species of fruits (62 species of pulps and four species of seeds). Results of fecal analysis showed that fig fruits were the most frequently eaten. Their seeds occurred in 92% of a total of 7212 chimpanzee fecal samples. The chimpanzees changed their diet according to seasonal and annual variations in both abundance and diversity of fruit species. However, they are very selective frugivores. Only a few pulp-fruit species are regularly identified in their fecal samples. During the rainy season, when ripe fruit was scarce, chimpanzees relied heavily on piths and leaves. They swallowed leaves of two species of Commelinaceae without chewing, probably for medical purposes. Animal foods were eaten infrequently. The montane forest of Kahuzi, where chimpanzees range up to 2600 m above sea level, may be the highest altitudinal limit ever recorded for their distribution. Compared to other chimpanzee habitats, Kahuzi has a low diversity of fruit species and the availability of a few pulp-fruit species may be critical to the survival of Kahuzi chimpanzees.  相似文献   

5.
Based on 8 years of observations of a group of western lowland gorillas (Gorilla beringei graueri) and a unit-group of chimpanzees (Pan troglodytes schweinfurthii) living sympatrically in the montane forest at Kahuzi–Biega National Park, we compared their diet and analyzed dietary overlap between them in relation to fruit phenology. Data on fruit consumption were collected mainly from fecal samples, and phenology of preferred ape fruits was estimated by monitoring. Totals of 231 plant foods (116 species) and 137 plant foods (104 species) were recorded for gorillas and chimpanzees, respectively. Among these, 38% of gorilla foods and 64% of chimpanzee foods were eaten by both apes. Fruits accounted for the largest overlap between them (77% for gorillas and 59% for chimpanzees). Gorillas consumed more species of vegetative foods (especially bark) exclusively whereas chimpanzees consumed more species of fruits and animal foods exclusively. Although the number of fruit species available in the montane forest of Kahuzi is much lower than that in lowland forest, the number of fruit species per chimpanzee fecal sample (average 2.7 species) was similar to that for chimpanzees in the lowland habitats. By contrast, the number of fruit species per gorilla fecal sample (average 0.8 species) was much lower than that for gorillas in the lowland habitats. Fruit consumption by both apes tended to increase during the dry season when ripe fruits were more abundant in their habitat. However, the number of fruit species consumed by chimpanzees did not change according to ripe fruit abundance. The species differences in fruit consumption may be attributed to the wide ranging of gorillas and repeated usage of a small range by chimpanzees and/or to avoidance of inter-specific contact by chimpanzees. The different staple foods (leaves and bark for gorillas and fig fruits for chimpanzees) characterize the dietary divergence between them in the montane forest of Kahuzi, where fruit is usually scarce. Gorillas rarely fed on insects, but chimpanzees occasionally fed on bees with honey, which possibly compensate for fruit scarcity. A comparison of dietary overlap between gorillas and chimpanzees across habitats suggests that sympatry may not influence dietary overlap in fruit consumed but may stimulate behavioral divergence to reduce feeding competition between them.  相似文献   

6.
We examined the relative importance of various botanical and topographical factors that influence nesting-site selection by chimpanzees ( Pan troglodytes schweinfurthii) in the Kalinzu Forest of Uganda. All of them—vegetation type; topographical features; frequency of preferred tree species; frequency of preferred tree size; fruit abundance—significantly influenced nesting-site selection. Fruit abundance and vegetation type had much stronger influences on site selection than the other factors did. In a dense forest environment like the Kalinzu Forest, the local and seasonal distributions of chimpanzee nests seem to reflect the pattern of home range use for feeding.  相似文献   

7.
We examined seasonal patterns of fruit availability, dietary quality, and group size in the descendants of an introduced chimpanzee population on Rubondo Island, Tanzania. The site has supported a free-ranging population without provisioning for 40 years. Our goals were to determine whether Rubondo chimpanzees experience periods of fruit shortage, and whether they respond to changes in fruit availability similarly to chimpanzees at endemic sites. We indexed the fruit availability of tree and liana species on transects stratified across three chimpanzee ranging areas. We used fecal analyses to evaluate seasonal changes in diet, and used data on party size and nesting group size to examine seasonal patterns of grouping. Tree fruit availability was positively correlated with rainfall, with a period of relative tree fruit scarcity corresponding with the long dry season. Liana fruit availability was not related to rainfall, and lianas exhibited less variable fruiting patterns across seasons. Fruits made up the majority of the chimpanzee diet, with lianas accounting for 35% of dietary fruit species. Fruits of the liana Saba comorensis were available during all months of phenological monitoring, but they were consumed more when tree fruit was scarce, suggesting that Saba comorensis fruits may be a fallback food for Rubondo chimpanzees. There were no increases in consumption of lower-quality plant parts between seasons, and there were no changes in group size between seasons. These results contrast with evidence from several endemic chimpanzee study sites, and indicate that Rubondo chimpanzees may have access to abundant and high-quality foods year round.  相似文献   

8.
Highly frugivorous primates like chimpanzees (Pan trogolodytes) must contend with temporal variation in food abundance and quality by tracking fruit crops and relying more on alternative foods, some of them fallbacks, when fruit is scarce. We used behavioral data from 122 months between 1995 and 2009 plus 12 years of phenology records to investigate temporal dietary variation and use of fallback foods by chimpanzees at Ngogo, Kibale National Park, Uganda. Fruit, including figs, comprised most of the diet. Fruit and fig availability varied seasonally, but the exact timing of fruit production and the amount of fruit produced varied extensively from year to year, both overall and within and among species. Feeding time devoted to all major fruit and fig species was positively associated with availability, reinforcing the argument that chimpanzees are ripe fruit specialists. Feeding time devoted to figs-particularly Ficus mucuso (the top food)--varied inversely with the abundance of nonfig fruits and with foraging effort devoted to such fruit. However, figs contributed much of the diet for most of the year and are best seen as staples available most of the time and eaten in proportion to availability. Leaves also contributed much of the diet and served as fallbacks when nonfig fruits were scarce. In contrast to the nearby Kanywara study site in Kibale, pith and stems contributed little of the diet and were not fallbacks. Fruit seasons (periods of at least 2 months when nonfig fruits account for at least 40% of feeding time; Gilby & Wrangham., Behavioral Ecology and Sociobiology 61:1771-1779, 2007) were more common at Ngogo than Kanyawara, consistent with an earlier report that fruit availability varies less at Ngogo [Chapman et al., African Journal of Ecology 35:287-302, 1997]. F. mucuso is absent at Kanyawara; its high density at Ngogo, combined with lower variation in fruit availability, probably helps to explain why chimpanzee population density is much higher at Ngogo.  相似文献   

9.
The effect of fruit availability on chimpanzee party size was investigated in the montane forest of Kahuzi. Seasonal variation in both fruit availability and party size was examined. Fruit abundance per se does not affect chimpanzee party size. However, seasonality and distribution patterns of fruits are both determinant ecological factors that control the size of chimpanzee parties at Kahuzi. There was no correlation between fruit abundance and the spatial distribution of fruits. When fruits were clumped and available in large amounts for a long period, chimpanzee party size increased, or otherwise decreased when fruits were highly available for only a limited period. Tree species that produced only a small amount of ripe fruit throughout the year did not affect the foraging party size of chimpanzees. Temporal and spatial variability in fruit abundance seems to constrain grouping patterns of chimpanzees at Kahuzi more so than in other chimpanzee habitats previously described.  相似文献   

10.
Almost all primates experience seasonal fluctuations in the availability of key food sources. However, the degree to which this fluctuation impacts foraging behavior varies considerably. Eastern chimpanzees (Pan troglodytes schweinfurthii) in Nyungwe National Park, Rwanda, live in a montane forest environment characterized by lower primary productivity and resource diversity than low‐elevation forests. Little is known about chimpanzee feeding ecology in montane forests, and research to date predominantly relies on indirect methods such as fecal analyses. This study is the first to use mostly observational data to examine how seasonal food availability impacts the feeding ecology of montane forest chimpanzees. We examine seasonal changes in chimpanzee diet and fallback foods (FBFs) using instantaneous scan samples and fecal analyses, supported by inspection of feeding remains. Chimpanzee fruit abundance peaked during the major dry season, with a consequent change in chimpanzee diet reflecting the abundance and diversity of key fruit species. Terrestrial herbaceous vegetation was consumed throughout the year and is defined as a “filler” FBF. In contrast to studies conducted in lower‐elevation chimpanzee sites, figs (especially Ficus lutea) were preferred resources, flowers were consumed at seasonally high rates and the proportion of non‐fig fruits in the diet were relatively low in the current study. These divergences likely result from the comparatively low environmental diversity and productivity in higher‐elevation environments.  相似文献   

11.
Via a field study of chimpanzees (Pan troglodytes schweinfurthii) and gorillas (Gorilla gorilla beringei) in Bwindi Impenetrable National Park, Uganda, we found that their diets are seasonally similar, but diverge during lean seasons. Bwindi chimpanzees fed heavily on fruits of Ficus sp., which were largely ignored by the gorillas. Bwindi gorilla diet was overall more folivorous than chimpanzee diet, but was markedly more frugivorous than that of gorillas in the nearby Virunga Volcanoes. During 4 mo of the year Bwindi gorilla diet included more food species than that of the chimpanzees. Three factors in particular—seasonal consumption of fibrous foods by gorillas, interspecific differences in preferred fruit species, and meat consumption by chimpanzees—contributed to dietary divergence between the two species. When feeding on fruits, gorillas ate Myrianthus holstii more frequently than chimpanzees did, while chimpanzees included more figs in their annual diet. Chimpanzee diet included meat of duikers and monkeys; gorilla frequently consumed decaying wood.  相似文献   

12.
The population of chimpanzees in the Kalinzu Forest, Uganda was censused with nest counts using the line-transect method. Four methods were examined to estimate density. The estimated densities, ranging from 2.0 to 4.7 chimpanzees per km2, all indicated a high population density, in comparison with other chimpanzee habitats. Moreover, the density in the logged area of the Kalinzu Forest was higher than that in the unlogged area. Several factors are thought to contribute to the high density in the Kalinzu Forest. Notable are the mosaic forest structure dominated by mature forest with patches of logged areas, selective logging of non-food tree species of chimpanzees, and low hunting pressure. These results suggest that selective logging may be a practical means of primate conservation in places where timbers are exploited.  相似文献   

13.
Data on foods consumed by gorillas and chimpanzees living in primary forest in Gabon were collected, mainly by examination of the contents of feces. Gorillas ate fruit very regularly (some fruit remains were present in 97.6% of 246 fecal samples examined), in addition to leaves, stems, pith, and bark. Some fruit remains were present in all chimpanzee fecal samples examined. Mean numbers of fruit species per fecal sample were 2.5 for gorillas and 2.1 for chimpanzees. Sixty percent of all identified foods recorded for gorillas were recorded for chimpanzees as well. Our results indicate that important differences in diet exist between western lowland gorillas and the eastern gorilla populations of Kahuzi-Biega and the Virunga Volcanoes. It is now clear that western gorillas cannot be accurately classed as folivores.  相似文献   

14.
We recorded 310 fresh chimpanzee night nests at 72 nest sites to determine their choice of tree and site for nesting vis-à-vis the effects of sympatric gorillas. Chimpanzees did not use trees for nesting according to their abundance, but instead tended to nest in fruit trees that they used as food sources. Nesting patterns of chimpanzees may vary with nesting group size, the type of vegetation, and fruit species eaten or not eaten by gorillas. When chimpanzees lodged as a small group in the secondary forest, they nested more frequently in trees bearing ripe fruits eaten only by themselves than in those with fruit eaten also by gorillas. When they lodged as a large group in the primary forest, they nested more frequently in trees bearing ripe fruits eaten by both apes. Nest group size is positively correlated with the availability of preferred ripe fruits in secondary forest. These findings not only reflect the larger foraging groups at the larger fruiting trees but also suggest that chimpanzees may have tended to occupy fruiting trees effectively by nesting in them and by forming large nest groups when the fruits attracted gorillas. Competition over fruits between gorillas and chimpanzees, due to their low productivity in the montane forest of Kahuzi, may have promoted the chimpanzee tactics.  相似文献   

15.
In order to understand dietary differentiation among frugivorous primates with simple stomachs, we present the first comparison of plant diets between chimpanzees and cercopithecine monkeys that controls for food abundance. Our aim was to test the hypothesis that monkeys have a more diverse diet as a result of their dietary tolerance for chemical antifeedants. Our study species are chimpanzees, blue monkeys, redtail monkeys, and gray-cheeked mangabeys living in overlapping ranges in Kibale National Park, Uganda. We indexed food abundance by the percentage of trees having ripe fruit within the range of each group; it varied widely during the year. Chimpanzees spent almost 3 times as much of their feeding time eating ripe fruits as the monkeys did and confined their diets almost exclusively to ripe fruits when they were abundant. Monkeys maintained a diverse diet at all times. When ripe fruit was scarce chimpanzee and monkey diets diverged. Chimpanzees relied on piths as their main fallback food, whereas monkeys turned to unripe fruits and seeds. For each primate group we calculated the total weighted mean intake of 5 antifeedants; condensed tannins (CT), total tannins assayed by radial diffusion (RD), monoterpenoids (MT), triterpenoids (TT), and neutral-detergent fiber (NDF). Monkeys had absolutely higher intakes of CT, RD, MT, and TT than those of chimpanzees, and their intake of NDF did not differ from that of chimpanzees, appearing relatively high given their lower body weights. However contrary to expectation, dietary divergence during fruit scarcity was not associated with any change in absolute or relative intake of antifeedants. For example, fruit scarcity did not affect the relative intake of antifeedants by cercopithecines compared to chimpanzees. Our results establish chimpanzees as ripe-fruit specialists, whereas cercopithecines are generalists with a higher intake of antifeedants. The low representation of ripe fruits in the diets of cercopithecines has not been explained. An important next step is to test the hypothesis that the difference between Kibale chimpanzees and cercopithecines represents a more general difference between apes and monkeys.  相似文献   

16.
Chimpanzees (Pan troglodytes) are ecologically flexible omnivores with broad diets comprising many plant and animal foods, although they mostly eat fruit (including figs). Like other ecologically flexible nonhuman primates (e.g., baboons, Papio spp.) with broad diets, their diets vary across habitats. Much data on diets come from short studies that may not capture the range of variation, however, and data are scant on variation within habitats and populations. We present data on diet composition and diversity for chimpanzees at Ngogo, in Kibale National Park, Uganda, collected over a 15-year period, with a focus on the plant components of the diet. We compare Ngogo data to those on chimpanzees at the nearby Kibale site of Kanyawara, on other chimpanzee populations, and on some other frugivorous-omnivorous primates. Results support the argument that chimpanzees are ripe fruit specialists: Ngogo chimpanzees ate a broad, mostly fruit-based diet, feeding time devoted to fruit varied positively with fruit availability, and diet diversity varied inversely with fruit availability. Comparison of Ngogo and Kanyawara shows much similarity, but also pronounced within-population dietary variation. Chimpanzees fed much more on leaves, and much less on pith and stems, at Ngogo. Figs accounted for somewhat less feeding time at Ngogo, but those of Ficus mucuso were quantitatively the most important food. This species is essentially absent at Kanayawara; its abundance and high productivity at Ngogo, along with much higher abundance of several other important food species, help explain why chimpanzee community size and population density are over three times higher at Ngogo. High inter-annual variation at Ngogo highlights the value of long-term data for documenting the extent of ecological variation among chimpanzee populations and understanding how such variation might affect population biology and social dynamics.  相似文献   

17.
We describe chimpanzee seed dispersal in the tropical montane forest of Nyungwe National Park (NNP), Rwanda, for a total of three years from January 1998 through May 2000 and May 2006 through March 2007. Relatively few studies have examined chimpanzee seed dispersal in montane communities where there are generally fewer fruiting tree species than in lowland forests. Such studies may reveal new insights into chimpanzee seed dispersal behaviors and the role that they play in forest regeneration processes. Chimpanzees are large‐bodied, highly frugivorous, and tend to deposit the seeds of both large‐ and small‐seeded fruits they consume in a viable state. We found that chimpanzees dispersed a total of 37 fruiting species (20 families) in their feces, 35% of which were large‐seeded trees (≥0.5 cm). A single large‐seeded tree, Syzygium guineense, was the only species to be dispersed in both wadges and feces. Based on phenological patterns of the top five large‐seeded tree species found in chimpanzee feces, our results indicate that chimpanzees do not choose fruits based on their availability. There was, however, a positive relationship between the presence of Ekebergia capensis seeds in chimpanzee feces and S. guineense seeds in chimpanzee wadges and their respective fruit availabilities. Our data reveal that proportionately fewer chimpanzee fecal samples at NNP contained seeds than that reported in two other communities in the Albertine Rift including one at mid‐elevation and one in montane forest. As in other chimpanzee communities, seeds of Ficus spp. were the most common genus in NNP chimpanzee feces. Our data do not support previous studies that describe Ficus spp. as a fallback food for chimpanzees and highlights an intriguing relationship between chimpanzees and the large‐seeded tree species, S. guineense. Am. J. Primatol. 71:901–911, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
A 13-month ecological study was conducted at Bossou, Guinea, West Africa, to elucidate how a community of wild chimpanzees (Pan troglodytes verus) deals with the scarcity of main foods. During the study period, fruit availability fluctuated radically. The chimpanzees were confirmed to depend heavily on three “keystone resources” which were available when their main foods (fruit pulp) were scarce. These were fruits of Musanga cecropioides, oil-palm (Elaeis guineensis) nuts, and oil-palm pith. These are abundant in the chimpanzees' home range and their nutritional contents compensate for a decrease in nutritional intake from fruit pulp. The presence of these excellent backup foods may explain the high reproductive performance of Bossou chimpanzees. Here, chimpanzees consumed two of the three keystone foods using two types of tool behavior: nut-cracking for oil-palm nuts and pestle-pounding for oil-palm pith. These tool-using behaviors accounted for 31.9% of the total feeding time spent in June (the month in which the highest frequency occurred) and 10.4% in total for the year. It is suggested that the Bossou chimpanzees depend strongly on tools for their subsistence. This implies a possible function for tool technology in the evolution of our human ancestors. Am J Phys Anthropol 106:283–295, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
1.  Despite a long history of research on the influence of fruit availability on the population density of large-bodied vertebrate frugivores, operational understanding of the factors regulating density in these taxa remains elusive. We propose that fruit resources can be distinguished from one another on the basis of their functional role for the animals in question, and that such a classification system can aid in identifying the most influential determinants of frugivore density.
2.  We compared the availability of several resource classes between two sites in Kibale National Park, Uganda separated by only 12 km yet differing threefold in density of chimpanzees ( Pan troglodytes ).
3.  We categorized plant species used for fruit by chimpanzees according to their availability relative to habitat-wide fruit productivity, and by their tendency towards inter-individual fruiting synchrony. We predicted that the site of high chimpanzee density would support a higher density of food plant species tending to produce crops during periods of high habitat-wide productivity [high fruit abundance (HFA foods)] and of those tending to fruit synchronously among individuals during times of low habitat-wide availability (sLFA foods). The first food class should provide chimpanzees with a high nutrient density (and thus promote population growth), whereas the second should provide stable subsistence during lean periods and thus a temporally consistent resource base.
4.  Counter to our prediction, only sLFA resources were more abundant at the site of high chimpanzee density than at the site of low density. We suggest that sLFA resources are most important in influencing density of large-bodied frugivores.  相似文献   

20.
The increased number of primates living in fragmented habitats necessitates greater knowledge of how they cope with large-scale changes to their environment. Chimpanzees (Pan troglodytes) are exceptionally vulnerable to forest fragmentation; however, little is known about chimpanzee feeding ecology in fragments. Although chimpanzees have been shown to prefer fruit when it is available and fall back on more abundant lower quality foods during periods of fruit scarcity, our understanding of how chimpanzees use fallback foods in forest fragments is poor. We examined how chimpanzees cope with periods of fruit scarcity in Gishwati Forest Reserve, a disturbed montane rain forest fragment in Rwanda. We assessed seasonal changes in chimpanzee diet and the use of preferred and fallback foods through fecal and food site analysis. We also examined seasonal variation in nest group size and habitat use through marked nest censuses. We found that chimpanzees experienced a seasonal reduction in preferred fruit availability, which led to a seasonal diet shift to more fibrous foods, including several that functioned as fallback foods. Our results suggest that during periods of fruit scarcity the chimpanzees also reduced nest group size. However, we found that the chimpanzees did not alter their habitat use between high- and low-fruit seasons, which suggests that the small size of the forest limits their ability to change their seasonal habitat use. Consequently, fallback foods appear to be particularly important in small food-impoverished habitats with limited ranging options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号