首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transamination and dephosphonylation reactions of the Schiff bases of pyridoxal(PL) with aminomethylphosphonic acid (AMP), 2-aminoethylphosphonic acid (2-AEP), and 2-amino-3-phosphonopropionic acid (APP) were studied in the absence and in the presence of Al(III), Zn(II), and Cu(II) ions. Transamination does not occur at measureable rates for the Schiff bases of AMP- and 2-AEP, and for their metal chelates. In the case of APP Schiff bases extensive transamination followed by dephosphonylation were found to occur as successive reactions. The ketimine reaction intermediate was not formed in sufficient concentration to be detected. The formation of alanine as the final product indicates that ketimine to aldimine conversion follows the dephosphonylation step. Since the molar amount of inorganic phosphate produced is considerably greater than that of pyridoxal present, the reaction may be considered to be the conversion of APP to alanine and phosphate with pyridoxal and metal ions as catalysts. The relative catalytic activities of the metal ions is AI(III) > Cu(II) > Zn(II). A proposed mechanism for β-dephosphonylation is compared with the generally accepted mechanism of pyridoxal and metal ion-catalyzed β-decarboxylation.  相似文献   

2.
In the usual reaction catalyzed by D-amino acid transaminase, cleavage of the alpha-H bond is followed by the reversible transfer of the alpha-NH2 to a keto acid cosubstrate in a two-step reaction mediated by the two vitamin B6 forms pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP). We report here a reaction not on the main pathway, i.e., beta-decarboxylation of D-aspartate to D-alanine, which occurs at 0.01% the rate of the major transaminase reaction. In this reaction, beta-C-C bond cleavage of the single substrate D-aspartate occurs rather than the usual alpha-bond cleavage in the transaminase reaction. The D-alanine produced from D-aspartate slowly inhibits both transaminase and decarboxylase activities, but NADH or NADPH instantaneously prevent D-aspartate turnover and D-alanine formation, thereby protecting the enzyme against inhibition. NADH has no effect on the enzyme spectrum itself in the absence of substrates, but it acts on the enzyme.D-aspartate complex with an apparent dissociation constant of 16 microM. Equivalent concentrations of NAD or thiols have no such effect. The suppression of beta-decarboxylase activity by NADH occurs concomitant with a reduction in the 415-nm absorbance due to the PLP form of the enzyme and an increase at 330 nm due to the PMP form of the enzyme. alpha-Ketoglutarate reverses the spectral changes caused by NADH and regenerates the active PLP form of the enzyme from the PMP form with an equilibrium constant of 10 microM. In addition to its known role in shuttling electrons in oxidation-reduction reactions, the niacin derivative NADH may also function by preventing aberrant damaging reactions for some enzyme-substrate intermediates. The D-aspartate-induced effect of NADH may indicate a slow transition between protein conformational studies if the reaction catalyzed is also slow.  相似文献   

3.
beta-decarboxylation of L-aspartic acid was observed in the system, pyridoxal: L-aspartic acid:aluminum(III), 1:100:1 when heated at 80 degrees for three hours. This reaction was followed by electronic spectroscopy and showed quantitative conversion of pyridoxal to pyridoxamine indicating decarboxylation of the ketimine. alpha-Methyl-L-aspartic acid was not decarboxylated indicating the presence of the alpha-proton and prior transamination as requirements for decarboxylation. When pyridoxamine and oxalo-2-propionic acid were reacted at pD 4.60, product analysis by nmr showed the presence of pyridoxamine and alpha-ketobutyric acid, indicating hydrolysis of the decarboxylated ketimine. Decarboxylation was fast compared to spontaneous decarboxylation. A mechanism is proposed for non-enzymatic decarboxylation and the previously suggested mechanism for the inactivation of the enzyme aspartate beta-decarboxylase is discussed.  相似文献   

4.
A key intermediate in the glutamate dehydrogenase (GDH)-catalyzed reaction is an imine. Mechanistically, therefore, GDH exhibits similarities to the ketimine reductases. In the current review, we briefly discuss (a) the metabolic importance of the GDH reaction in liver and brain, (b) the mechanistic similarities between GDH and the ketimine reductases, (c) the metabolic importance of the brain ketimine reductases, and (d) the neurochemical consequences of defective ketimine reductases. Our review contains many historical references to the early work on amino acid metabolism. This work tends to be overlooked nowadays, but is crucial for a contemporary understanding of the central importance of ketimines in nitrogen and intermediary metabolism. The ketimine reductases are important enzymes linking nitrogen flow among several key amino acids, yet have been little studied. The cerebral importance of the ketimine reductases is an area of biomedical research that deserves far more attention.  相似文献   

5.
The conjoint substitution of three active-site residues in aspartate aminotransferase (AspAT) of Escherichia coli (Y225R/R292K/R386A) increases the ratio of L-aspartate beta-decarboxylase activity to transaminase activity >25 million-fold. This result was achieved by combining an arginine shift mutation (Y225R/R386A) with a conservative substitution of a substrate-binding residue (R292K). In the wild-type enzyme, Arg(386) interacts with the alpha-carboxylate group of the substrate and is one of the four residues that are invariant in all aminotransferases; Tyr(225) is in its vicinity, forming a hydrogen bond with O-3' of the cofactor; and Arg(292) interacts with the distal carboxylate group of the substrate. In the triple-mutant enzyme, k(cat)' for beta-decarboxylation of L-aspartate was 0.08 s(-1), whereas k(cat)' for transamination was decreased to 0.01 s(-1). AspAT was thus converted into an L-aspartate beta-decarboxylase that catalyzes transamination as a side reaction. The major pathway of beta-decarboxylation directly produces L-alanine without intermediary formation of pyruvate. The various single- or double-mutant AspATs corresponding to the triple-mutant enzyme showed, with the exception of AspAT Y225R/R386A, no measurable or only very low beta-decarboxylase activity. The arginine shift mutation Y225R/R386A elicits beta-decarboxylase activity, whereas the R292K substitution suppresses transaminase activity. The reaction specificity of the triple-mutant enzyme is thus achieved in the same way as that of wild-type pyridoxal 5'-phosphate-dependent enzymes in general and possibly of many other enzymes, i.e. by accelerating the specific reaction and suppressing potential side reactions.  相似文献   

6.
Al(III)-catalyzed reactions of vitamin B-6 (pyridoxal)-amino acid schiff bases have been studied in 2H2O. By using excess of the amino acid and varying conditions, amino acids selectively deuterated in the α-position, the β-position, or in both α- and β-positions are isolated. Reaction conditions are those of model systems in which amino acids are known to be reversibly transaminated and racemized by pyridoxal and Al(III). The racemization reaction leads to α-deuteration of the amino acid while transamination followed by its reverse leads to both α- and β-deuteration. The two reactions are viewed as passing through a common dihydropyridine intermediate. The Al(III) serves as an interesting model for the enzyme in that it not only catalyzes transamination and racemization but also can be made to select which of these reactions predominates. This selective catalysis of these reactions is attributed to strong and different pH dependence of the reactivity of various sites of the dihydropyridine intermediate for vitamin B-6 catalysis when incorporated in an Al(III) complex. The biochemical importance of this selectivity and the practical extension of the method of deuteration to other amino acids is discussed.  相似文献   

7.
Partitioning of the ketimine (or ketimine + quinonoid) intermediate(s) in the mitochondrial aspartate aminotransferase reactions was investigated by following the rates of loss of 18O from carbonyl-18O-enriched alpha-ketoglutarate together with the rate of L-glutamate formation. The ratio of these rate constants was found to equal 1 at 10 degrees C, implying that the above intermediate(s) face(s) equal barriers with respect to the forward and reverse reactions. This partition ratio of 1 together with that measured from the alpha-amino acid side of the reaction [Julin, D.A., Wiesinger, H., Toney, M. D., & Kirsch, J.F. (1989) Biochemistry (preceding paper in this issue)] suggests that the rate constant for exchange of alpha-ketoglutarate-derived H2(18)O from the ketimine (or ketimine + quinonoid) form(s) of the enzyme with solvent is comparable with that for kcat.  相似文献   

8.
This review describes current research on the preventive effect of dietary vitamin B(6) against colon tumorigenesis and its possible mechanisms. Studies in cell culture have demonstrated that high levels of vitamin B(6) suppress growth of some cancer cells. From these studies it has been considered that supraphysiological doses of vitamin B(6) suppress tumor growth and metastasis. However, recent rodent study has indicated that azoxymethane-induced colon tumorigenesis in mice is suppressed by moderate doses of dietary vitamin B(6.) Epidemiological studies also support an inverse relationship between vitamin B(6) intake and colon cancer risk. Potential mechanisms underlying the preventive effect of dietary vitamin B(6) have been suggested to include the suppression of cell proliferation, oxidative stress, nitric oxide (NO) synthesis, and angiogenesis.  相似文献   

9.
Vitamin B6 comprises a group of compounds that are involved in a surprisingly high diversity of biochemical reactions. Actually, most of these reactions are co-catalyzed by a single B6 vitamer, pyridoxal 5′-phosphate, making it a crucial and versatile co-factor in many metabolic processes in the cell. In addition, it has been demonstrated in recent years that vitamin B6 has a second important function by being an effective antioxidant. Because of these two characteristics the vitamin is an interesting compound to study in plants. This review provides a brief overview and update on such important aspects like vitamin B6-dependent enzymes and known biosynthetic pathways in plants, phenotypes of plant mutants affected in vitamin B6 biosynthesis, and the potential benefits of modifying vitamin B6 content in plants.  相似文献   

10.
Vitamin A is essential for vision and the growth/differentiation of almost all human organs. Plasma retinol binding protein (RBP) is the principle and specific carrier of vitamin A in the blood. Here we describe an optimized technique to produce and purify holo-RBP and two real-time monitoring techniques to study the transport of vitamin A by the high-affinity RBP receptor STRA6. The first technique makes it possible to produce a large quantity of high quality holo-RBP (100%-loaded with retinol) for vitamin A transport assays. High quality RBP is essential for functional assays because misfolded RBP releases vitamin A readily and bacterial contamination in RBP preparation can cause artifacts. Real-time monitoring techniques like electrophysiology have made critical contributions to the studies of membrane transport. The RBP receptor-mediated retinol transport has not been analyzed in real time until recently. The second technique described here is the real-time analysis of STRA6-catalyzed retinol release or loading. The third technique is real-time analysis of STRA6-catalyzed retinol transport from holo-RBP to cellular retinol binding protein I (CRBP-I). These techniques provide high sensitivity and resolution in revealing RBP receptor''s vitamin A uptake mechanism.  相似文献   

11.
Density functional theory and atoms in molecules theory were used to study bond breakage and bond formation in the trans-2-butene protonation reaction in an acidic zeolitic cluster. The progress of this reaction along the intrinsic reaction coordinate, in terms of several topological properties of relevant bond critical points and atomic properties of the key atoms involved in these concerted mechanisms, were analyzed in depth. At B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p) level, the results explained the electron density redistributions associated with the progressive bond breakage and bond formation of the reaction under study, as well as the profiles of the electronic flow between the different atomic basins involved in these electron reorganization processes. In addition, we found a useful set of topological indicators that are useful to show what is happening in each bond/atom involved in the reaction site as the reaction progresses.  相似文献   

12.
An N-methylated, cationic pyridoxamine conjugation reagent was synthesized and tethered via a disulfide bond to a cysteine residue inside the cavity of intestinal fatty acid binding protein. The conjugate was characterized and the kinetic parameters compared to its nonmethylated pyridoxamine analogue. Kinetic isotope effects were used for further mechanistic analysis. Taken together, these experiments suggest that a step distinct from deprotonation of the ketimine in the pyridoxamine to pyridoxal reaction is what limits the rate of the artificial transaminase IFABP-Px. However, the internal energetics of reactions catalyzed by the conjugate containing the N-methylated cofactor appear to be different suggesting that the MPx reagent will be useful in future experiments designed to alter the catalytic properties of semisynthetic transaminases.  相似文献   

13.
Rat liver homogenates heated for 10 min at 60 degrees C incubated with L-cystathionine yield cystathionine ketimine which was identified by its typical UV spectrum and by cochromatography with authentic samples on the amino acid analyzer. Alanine and alpha-amino butyric acid have been also detected among the final products. The reaction is due to heat stable gamma-cystathionase and transaminases present in the extracts. Cystathionase produces alpha-keto butyric acid and pyruvic acid which are then used for the transamination of the remaining cystathionine to yield the ketimine. This is the first report indicating the occurrence in a mammalian tissue of an enzymatic system using cystathionine for reactions differing from the traditional transulfuration to cysteine.  相似文献   

14.
The notion of internal (or intramolecular) cooperativity of chirality is reviewed on the basis of various examples of diastereoisomeric ferrocenylphosphine ligands used in the gold(I)-catalyzed aldol reaction. It was found that the stereochemical outcome of this reaction strongly depends on the specific combination of the absolute configuration of the different stereogenic centers present in the ligand. Thus, individual chirotopic segments in these ligand molecules can act either in a cooperative or noncooperative manner in determining both diastereo-and enantioselectivity. Furthermore, several examples of application of the strategy of double stereodifferentiation (external, or intermolecular cooperativity of chirality) in the gold(I)-catalyzed aldol reaction and the vanadium(IV)-catalyzed hetero Diels–Alder condensation are presented. Based on our work it is apparent that, whether the diastereoselectivity of these two reactions is controlled by the catalyst or by a chiral substrate, cannot be predicted and very much depends on the nature of every individual reactant. Thus, it was found that in both reactions the chiral aldehyde substrate usually has a strong impact on the diastereoselectivity, leading to interesting patterns of double asymmetric induction. On the other hand, chiral isocyanoacetate and chiral-activated dienes, respectively, showed little or no effect on the stereochemical outcome of the reactions.  相似文献   

15.
Preliminary studies of vitamin B6 metabolism in three adult domestic cats detected very little pyridoxic acid in the urine. At oral doses of 49 to 490 mumol of [14C]pyridoxine hydrochloride, 50% of the excreted dose occurred as pyridoxine 3-sulfate and 25% as N-methylpyridoxine. The identity of these two metabolites was confirmed by isolation from urine and comparison with known compounds. A third compound was identified as pyridoxal 3-sulfate on the basis of chromatographic behavior and fluorescent properties before and after hydrolysis. At pyridoxine intakes of 0.97 mumol/day, the concentration of pyridoxal 3-sulfate in the urine sometimes exceeded the concentration of pyridoxine 3-sulfate. Pyridoxic acid remained a minor urinary metabolite at pyridoxine intakes ranging from 0.97 to 490 mumol/day. Although sulfation of phenol groups and methylation of the ring nitrogen are well-known detoxication reactions, this appears to be the first time such reactions have been observed in normal metabolism of vitamin B6. These observations provide further evidence of the diversity of vitamin B6 metabolism between species. While such diversity complicates the extrapolation of data from animal studies to humans, it does provide a variety of models for examining the influences of various factors on vitamin B6 metabolism.  相似文献   

16.
(2-Amino-5, 6-dimethylbenzimidazolyl)-cobamide (III) is transformed to (2-hydroxy-5, 6-dimethylbenzimidazolyl) cobamide (IV) by nitrous acid. Exchange of the NH2-group by hydrogen with nitrous acid/hypophosphorous acid yields vitamin B12 (I). This reaction completes a cycle vitamin B12 (I)----[carboxy(2-cyanoamino-4,5-dimethylphenyl)amino]cobamide+ ++ (II)----(2-amino-5,6-dimethylbenzimidazolyl)cobamide (III)----vitamin B12 (I), which allows chemical 14C-labelling of vitamin B12. In this procedure cyanogen bromide, which is necessary for the first step, was labelled with [14C] cyanide. By the following reactions a vitamin B12 was formed in which C-2 of the 5, 6-dimethylbenzimidazole moiety is labelled.  相似文献   

17.
Potato 5-lipoxygenase (5-PLO) catalyzes the reduction of 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13-HPOD) in the presence of vitamin E. I mol of vitamin E is required to consume 2 mol of 13-HPOD. The mechanism of the 5-PLO-catalyzed oxidation of vitamin E by 13-HPOD is similar to that previously established for the soybean 15-lipoxygenase (L-1)-catalyzed oxidation of phenidone by 13-HPOD, and seems to involve a one-electron reduction of the O-O bond of 13-HPOD. 5-PLO and L-1 exhibit very different substrate specificities and pH profiles for their peroxidase-like activity. Actually, among the 20 compounds containing various reducible functions and the 10 derivatives of vitamin E which have been studied, only four products containing hydrophobic long chains, ascorbic acid 6-palmitate, the trolox esters of octanol and undecanol, and vitamin E exhibit high peroxidase-like activities for 5-PLO. On the contrary, much more compounds, even not very hydrophobic, are good substrates for the peroxidase-like activity of L-1.  相似文献   

18.
A Srivastava  M J Modak 《Biochemistry》1980,19(14):3270-3275
Terminal deoxynucleotidyltransferase (TdT) has been found to catalyze both pyrophosphate exchange and pyrophosphorolysis reactions. Both reactions are strongly inhibited by antiserum to TdT. The reactions require the presence of a divalent cation, a single- or double-stranded oligomeric or polymeric DNA or RNA, and deoxyribonucleoside triphosphates (for PPi exchange only). Of the three divalent cations tested, Mg2+ and Co2+ are equally effective, while Mn2+ neither is used for catalysis nor inhibits the Mg2+-catalyzed reactions. Ribonucleoside triphosphates have been found to support the PPi exchange reaction to a minor extent and have no inhibitory effect on the catalysis mediated by dNTPs. Inhibition studies, using SH group inhibitors, Zn chelator, and a substrate binding site specific reagent, revealed that PPi exchange and pyrophosphorolysis reactions may be distinguished by differences in their sensitivity to inhibition by various reagents. While the PPi exchange reaction is strongly inhibited by sulfhydryl reagents, o-phenanthroline, and pyridoxal phosphate, the pyrophosphorolysis reaction is insensitive to these reagents. In addition, the pyrophosphorolysis reaction is also found not to require a free 3'-OH terminus of a primer. This difference in the susceptibility of the two reactions indicates that discrete active-site structures exist in TdT which catalyze PPi exchange and pyrophosphorolysis reactions.  相似文献   

19.
Summary Oxidation of aminoethylcysteine ketimine (AECK) is followed by the change of 296nm absorbance, by the O2 consumption and by the HPLC analysis of the oxidation products. The oxidation is strongly inhibited by the addition of superoxide dismutase (SOD) but not by hydroxyl radical scavengers or catalase. Addition of EDTA or o-phenanthroline (OPT) favours the oxidation, probably by keeping contaminating metals in solution at the pH studied. Addition of Fe3+ ions strongly accelerates the oxidation in the presence of EDTA or OPT. AECK reacts stoichiometrically with OPT-Fe3+ complex producing the Fe2+ complex which is not reoxidised by bubbling O2. HPLC analyses of the final oxidation products reacting with 2,4-dinitrophenylhydrazine (DNPH) confirm the AECK sulfoxide as the main product of the slow spontaneous oxidation. The detection of other oxidation products when the reaction is speeded up by the addition of the OPT-Fe3+ complex, suggests that the oxidation takes place essentially on the carbon portion of the AECK molecule in the side of the double bond. On the basis of the results presented here, a scheme of reactions is illustrated which starts with the transfer of one electron from AECK to a contaminating metal ion (possibly Fe3+) producing the radical AECK as the initiator of a self propagating reaction. The radical AECK reacting with O2 starts a series of reactions accounting for most of the products detected.Abbreviations AECK S-aminoethyl-L-cysteine ketimine - AECK-SO aminoethylcysteine ketimine sulfoxide - CMCA S-carboxymethylcysteamine - DNPH 2,4-dinitrophenylhydrazine - OPT o-phenanthroline - DTPA diethylenetriaminepentaacetic acid - SOD superoxide dismutase  相似文献   

20.
Homocysteine (Hcy), a sulfur amino acid, is the only direct precursor for L-methionine synthesis through a reaction that requires vitamin B??, representing a connection with "one-carbon" units metabolism. Hcy catabolism requires vitamin B? and as a consequence, alteration in folic acid and B vitamins status impairs Hcy biotransformation. Numerous studies have indicated that Hcy is an independent risk factor for cardio- and cerebrovascular diseases. In the last decade, several clinical trials have investigated the possible correlation between the use of folic acid and vitamins B? and B?? for lowering Hcy plasma concentration and the reduced risk of stroke or its recurrence. This review is aimed to present some aspects of Hcy biochemistry, as well as the mechanisms through which it exerts the toxic effects on the vascular endothelium. We also discuss the results of some of the clinical trials developed to investigate the beneficial effects of vitamin therapy in the prevention and management of stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号