首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandin E(2) (PGE(2)) has been shown to produce fever by acting on EP3 receptors within the preoptic area of the brain. However, there is little information about the molecular events downstream of EP3 activation in preoptic neurons. As a first step toward this issue, we examined PGE(2)-induced gene expression changes at single-cell resolution in preoptic neurons expressing EP3. Brain sections of the preoptic area from PGE(2)- or saline-injected rats were stained with an anti-EP3 antibody, and the cell bodies of EP3-positive neurons were dissected and subjected to RNA amplification procedures. Microarray analysis of the amplified products demonstrated the possibility that gene expression of gamma-aminobutyric acid type A (GABA(A)) receptor subunits is decreased upon PGE(2) injection. Indeed, we found that most EP3-positive neurons in the mouse preoptic area are positive for the alpha2 or gamma2 GABA(A) receptor subunit. Moreover, PGE(2) decreased the preoptic gene expression of these GABA(A) subunits via an EP3-dependent and pertussis toxin-sensitive pathway. PGE(2) also attenuated the preoptic protein expression of the alpha2 subunit in wild-type but not in EP3-deficient mice. These results indicate that PGE(2)-EP3 signaling elicits G(i/o) activation in preoptic thermocenter neurons, and we propose the possibility that a rapid decrease in preoptic GABA(A) expression may be involved in PGE(2)-induced fever.  相似文献   

2.
Cyclooxygenase-2 (COX-2) is constitutively expressed and highly regulated in the thick ascending limb (TAL). As COX-2 inhibitors (Coxibs) increase COX-2 expression, we tested the hypothesis that a negative feedback mechanism involving PGE(2) EP3 receptors regulates COX-2 expression in the TAL. Sprague-Dawley rats were treated with a Coxib [celecoxib (20 mg·kg(-1)·day(-1)) or rofecoxib (10 mg·kg(-1)·day(-1))], with or without sulprostone (20 μg·kg(-1)·day(-1)). Sulprostone was given using two protocols, namely, previous to Coxib treatment (prevention effect; Sulp7-Coxib5 group) and 5 days after initiation of Coxib treatment (regression effect; Coxib10-Sulp5 group). Immunohistochemical and morphometric analysis revealed that the stained area for COX-2-positive TAL cells (μm(2)/field) increased in Coxib-treated rats (Sham: 412 ± 56.3, Coxib: 794 ± 153.3). The Coxib effect was inhibited when sulprostone was used in either the prevention (285 ± 56.9) or regression (345 ± 51.1) protocols. Western blot analysis revealed a 2.1 ± 0.3-fold increase in COX-2 protein expression in the Coxib-treated group, an effect abolished by sulprostone using either the prevention (1.2 ± 0.3-fold) or regression (0.6 ± 0.4-fold vs. control, P < 0.05) protocols. Similarly, the 6.4 ± 0.6-fold increase in COX-2 mRNA abundance induced by Coxibs (P < 0.05) was inhibited by sulprostone; prevention: 0.9 ± 0.3-fold (P < 0.05) and regression: 0.6 ± 0.1 (P < 0.05). Administration of a selective EP3 receptor antagonist, L-798106, also increased the area for COX-2-stained cells, COX-2 mRNA accumulation, and protein expression in the TAL. Collectively, the data suggest that COX-2 levels are regulated by a novel negative feedback loop mediated by PGE(2) acting on its EP3 receptor in the TAL.  相似文献   

3.
The purpose of the present study was to compare the localization of prostaglandin E(2) receptor subtypes in normal human and mouse ocular tissues. Paraffin embedded sections of normal human and mouse (129 Sv/Ev) eyes were treated with EP(1), EP(2), EP(3) and EP(4) specific antibodies and subsequently incubated with Alexa Fluor secondary antibody (Ex/Em=555/571) to detect the presence of EP receptor proteins. Fluorescence of the localized antibodies was visualized in a Carl Zeiss Microscope (Axiovert 200) and photographed using Carl Zeiss Axiocam camera. In mice EP(1) and EP(3) receptor subtypes were only moderately expressed, EP(3) receptor expression being almost negligible. In human cornea and iris ciliary body, EP(1) and EP(3) receptors were prominently expressed. EP(4) receptor was expressed moderately in human and mouse ocular tissues. EP(2) receptor was the most prominently and abundantly expressed receptor in both human and mouse ocular tissues. It is concluded that the pattern of the distribution of EP receptor subtypes in the ocular tissues are similar in human and mouse. Thus, 129 Sv/Ev strains of mice would make an appropriate animal model for studying the ocular pathophysiological roles of prostaglandin receptor agonists.  相似文献   

4.
Elevated levels of PGE(2) have been reported in synovial fluid and cartilage from patients with osteoarthritis (OA). However, the functions of PGE(2) in cartilage metabolism have not previously been studied in detail. To do so, we cultured cartilage explants, obtained from patients undergoing knee replacement surgery for advanced OA, with PGE(2) (0.1-10 muM). PGE(2) inhibited proteoglycan synthesis in a dose-dependent manner (maximum 25% inhibition (p < 0.01)). PGE(2) also induced collagen degradation, in a manner inhibitable by the matrix metalloproteinase (MMP) inhibitor ilomastat. PGE(2) inhibited spontaneous MMP-1, but augmented MMP-13 secretion by OA cartilage explant cultures. PCR analysis of OA chondrocytes treated with PGE(2) with or without IL-1 revealed that IL-1-induced MMP-13 expression was augmented by PGE(2) and significantly inhibited by the cycolooygenase 2 selective inhibitor celecoxib. Conversely, MMP-1 expression was inhibited by PGE(2), while celecoxib enhanced both spontaneous and IL-1-induced expression. IL-1 induction of aggrecanase 5 (ADAMTS-5), but not ADAMTS-4, was also enhanced by PGE(2) (10 muM) and reversed by celecoxib (2 muM). Quantitative PCR screening of nondiseased and end-stage human knee OA articular cartilage specimens revealed that the PGE(2) receptor EP4 was up-regulated in OA cartilage. Moreover, blocking the EP4 receptor (EP4 antagonist, AH23848) mimicked celecoxib by inhibiting MMP-13, ADAMST-5 expression, and proteoglycan degradation. These results suggest that PGE(2) inhibits proteoglycan synthesis and stimulates matrix degradation in OA chondrocytes via the EP4 receptor. Targeting EP4, rather than cyclooxygenase 2, could represent a future strategy for OA disease modification.  相似文献   

5.
Previously, we demonstrated that prostaglandin E(2) (PGE(2)) induced cAMP and cyst formation through PGE(2) receptor-2 (EP2) activity in human autosomal-dominant polycystic kidney disease (ADPKD) epithelial cells. In this study, we determined the role of EP2 and EP4 receptors in mediating PGE(2) stimulation of cAMP signaling and cystogenesis in mouse renal epithelial cells using the inner medullary collecting duct-3 (IMCD-3) cell line. In contrast to human ADPKD cells, using novel EP2 and EP4 antagonists, we found that IMCD-3 cells expressed functional EP4 but not EP2, which stimulated cAMP formation and led to cyst formation in 3D culture system. The involvement of EP4 receptors in IMCD-3 cells was further supported by the specific effect of EP4 siRNA that inhibited PGE(2)-induced cystogenesis. We also observed different cellular localization of EP2 or EP4 receptors in IMCD-3 transfected cells. Collectively, our results suggest an important role of different expression of EP2 or EP4 receptors in the regulation of cystogenesis.  相似文献   

6.
EP2 and EP4 prostanoid receptor signaling   总被引:13,自引:0,他引:13  
Regan JW 《Life sciences》2003,74(2-3):143-153
  相似文献   

7.
The cross-signaling between (cell) adhesion molecules is nowadays a well-accepted phenomenon and includes orchestrated cellular changes and changes in the microenvironment. For example, Ep-CAM is an epithelial adhesion molecule that prevails in active proliferating tissue and is suppressed in a more differentiated state of the cell. E-cadherin adhesion complexes are typical for the advanced and terminal differentiated cell status. During normal proliferation, E-cadherin is not suppressed. We have demonstrated the effect of overexpression of Ep-CAM on E-cadherin, which probably affects the connection of cadherins and F-actin. Phosphatidylinositol 3-kinase (Pi3K) participates in various regulating mechanisms, for example in signaling to nuclei, vesicle transport, and cytoskeletal rearrangements. The effect of Ep-CAM on E-cadherin mediated junctions as well as the involvement of Pi3K in regulating adherens junctions, led us to investigate the potential interaction between Pi3K and Ep-CAM. Introduction of Ep-CAM in the epithelial cells caused abrogation of N-cadherin mediated cell–cell adhesion, which could be inhibited by Pi3K inhibitor LY294002. Moreover, the Pi3K subunit p85 was precipitated with Ep-CAM from cell lysates, and this complex showed kinase activity. The Pi3K activity shuttled from N-cadherin to Ep-CAM. From our results, we conclude that Ep-CAM cross signaling with N-cadherin involves Pi3K, resulting in the abrogation of the cadherin adhesion complexes in epithelial cells.  相似文献   

8.
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostanoid synthesis, has been implicated in the neurotoxicity resulting from hypoxia-ischemia, and its inhibition has therapeutic potential for ischemic stroke. However, COX-2 inhibitors increase the risk of cardiovascular complications. We therefore sought to identify the downstream effectors of COX-2 neurotoxicity, and found that prostaglandin E(2) EP1 receptors are essential for the neurotoxicity mediated by COX-2-derived prostaglandin E(2). EP1 receptors disrupt Ca(2+) homeostasis by impairing Na(+)-Ca(2+) exchange, a key mechanism by which neurons cope with excess Ca(2+) accumulation after an excitotoxic insult. Thus, EP1 receptors contribute to neurotoxicity by augmenting the Ca(2+) dysregulation underlying excitotoxic neuronal death. Pharmacological inhibition or gene inactivation of EP1 receptors ameliorates brain injury induced by excitotoxicity, oxygen glucose deprivation and middle cerebral artery (MCA) occlusion. An EP1 receptor inhibitor reduces brain injury when administered 6 hours after MCA occlusion, suggesting that EP1 receptor inhibition may be a viable therapeutic option in ischemic stroke.  相似文献   

9.
Prostaglandin E2 (PGE2) is emerging as an important co-modulator of B cell responses. Using a pharmacological approach, we aimed to delineate the role of PGE2 in B cell receptor (BCR) induced apoptosis of immature B cells. Gene and protein expression analyses showed that, of the four PGE2 receptors subtypes, only EP4 receptor is upregulated upon BCR cross-linking, leading to sensitization of WEHI 231 cells towards PGE2 mediated inhibitory effects. EP4 receptor antagonist ONO-AE3-208, was able to completely revert the observed effects of PGE2. The engagement of EP4 receptor promotes BCR-induced G0/G1 arrest of WEHI 231 cells, resulting in enhanced caspase mediated, BCR-induced apoptosis. We addressed, mechanistically, the interplay between BCR and EP4 receptor signaling components. Prostaglandin1-alcohol (Pge1-OH), a selective EP4 receptor agonist inhibits BCR-induced activation of NF-κB by suppression of BCR-induced IκBα phosphorylation. Disruption of prosurvival pathways is a possible mechanism by which PGE2 enhances BCR-induced apoptosis in immature B lymphocytes.  相似文献   

10.
Pro-inflammatory pathways participate in the pathogenesis of atherosclerosis. However, the role of endogenous anti-inflammatory pathways in atheroma has received much less attention. Therefore, using cDNA microarrays, we screened for genes regulated by prostaglandin E(2) (PGE(2)), a potential endogenous anti-inflammatory mediator, in lipopolysaccharide (LPS)-treated human macrophages (MPhi). PGE(2) (50 nm) attenuated LPS-induced mRNA and protein expression of chemokines including monocyte chemoattractant protein-1, interleukin-8, macrophage inflammatory protein-1alpha and -1beta, and interferon-inducible protein-10. PGE(2) also inhibited the tumor necrosis factor-alpha-, interferon-gamma-, and interleukin-1beta-mediated expression of these chemokines. In contrast to the case of MPhi, PGE(2) did not suppress chemokine expression in human endothelial and smooth muscle cells (SMC) treated with LPS and pro-inflammatory cytokines. To assess the potential paracrine effect of endogenous PGE(2) on macrophage-derived chemokine production, we co-cultured MPhi with SMC in the presence of LPS. In these co-cultures, cyclooxygenase-2-dependent PGE(2) production exceeded that in the mono-cultures, and MIP-1beta declined significantly compared with MPhi cultured without SMC. We further documented prominent expression of the PGE(2) receptor EP4 in MPhi in both culture and human atheroma. Moreover, a selective EP4 antagonist completely reversed PGE(2)-mediated suppression of chemokine production. Thus, endogenous PGE(2) may modulate inflammation during atherogenesis and other inflammatory diseases by suppressing macrophage-derived chemokine production via the EP4 receptor.  相似文献   

11.
Prostaglandin E2 (PGE2) can stimulate bone resorption by a cyclic AMP-dependent pathway. Two PGE2 receptors, EP2 and EP4 have been shown to play a role in PGE2 stimulation of osteoclast formation. In primary osteoblastic cell cultures from EP2 wild type (EP2 +/+) mice, PGE2 (0.1 microM) increased cyclic AMP production 3.5-fold, but PGE2 had no effect on cells from mice in which the EP2 receptor had been deleted (EP2 -/-). To examine the role of the EP2 receptor in the resorption response in vivo we injected PGE2 in EP2 -/- mice, and compared them with EP2 +/+ mice. Injection of PGE2 (3 mg/kg, four times daily for three days) in 9- to 12-month-old male mice on a 129 SvEv background increased serum calcium from 9.8 +/- 0.5 to 10.7 +/- 0.3 mg/dl (P < 0.01) in EP2 +/+ mice but not in EP2 -/- mice (10.1 +/- 0.3 vs. 10.2 +/- 0.3 mg/dl). PGE2 injection (6 mg/kg twice a day for three days) in 3-4 month old male mice on a C57 BL/6 X 129 SvEv background increased calcium from 8.2 +/- 0.1 to 9.0 +/- 0.3 mg/dl (P < 0.05) in EP2 +/+ mice but had no effect in EP2-/- mice (8.4 +/- 0.1 vs. 8.3 +/- 0.2 mg/dl). Injection of PGE2 over the calvariae of EP2 +/+ and EP2-/- mice increased the expression of receptor activator of nuclear factor kappaB ligand (RANKL) both locally and in the tibia, but RANKL responses were lower in EP2 -/- mice. We conclude that EP2 receptor plays a role in the hypercalcemic response to PGE2. This impaired response in EP2 -/- mice may be due to decreased ability to stimulate cyclic AMP and in part, to a smaller increase in the expression of RANKL mRNA.  相似文献   

12.
13.
Prostaglandin E2 (PGE2) has been proposed to be a potent stimulator of bone resorption. However, PGE2 itself has been shown to directly inhibit bone-resorbing activity of osteoclasts. We examined the role of PGE2 in the function of mouse osteoclasts formed in vitro. Bone marrow macrophage osteoclast precursors expressed PGE2 receptors EP1, EP2, EP3beta, and EP4, and the expression of EP2 and EP4 was down-regulated during osteoclastic differentiation induced by receptor activator of NF-kappaB ligand and macrophage colony-stimulating factor. In contrast, functional EP1 was continuously expressed in mature osteoclasts. PGE2 as well as calcitonin caused intracellular Ca2+ influx in osteoclasts. However, PGE2 and 17-phenyltrinol-PGE2 (an EP1 agonist) failed to inhibit actin-ring formation and pit formation by osteoclasts cultured on dentine slices. When EP4 was expressed in osteoclasts using an adenovirus carrying EP4 cDNA, both actin-ring and pit-forming activities of osteoclasts were inhibited in an infectious unit-dependent manner. Treatment of EP4-expressing osteoclasts with PGE2 further inhibited their actin-ring and pit-forming activities. Such inhibitory effects of EP4-mediated signals on osteoclast function are similar to those that are calcitonin receptor-mediated. Thus, osteoclast precursors down-regulate their own EP2 and EP4 levels during their differentiation into osteoclasts to escape inhibitory effects of PGE2 on bone resorption.  相似文献   

14.
Prostaglandin E(2) (PGE(2)) has a strong protective effect on the gastric mucosa in vivo; however, the molecular mechanism of a direct cytoprotective effect of PGE(2) on gastric mucosal cells has yet to be elucidated. Although we reported previously that PGE(2) inhibited gastric irritant-induced apoptotic DNA fragmentation in primary cultures of guinea pig gastric mucosal cells, we show here that PGE(2) inhibits the ethanol-dependent release of cytochrome c from mitochondria. Of the four main subtypes of PGE(2) receptors, we also demonstrated, using subtype-specific agonists, that EP(2) and EP(4) receptors are involved in the PGE(2)-mediated protection of gastric mucosal cells from ethanol-induced apoptosis. Activation of EP(2) and EP(4) receptors is coupled with an increase in cAMP, for which a cAMP analogue was found here to inhibit the ethanol-induced apoptosis. The increase in cAMP is known to activate both protein kinase A (PKA) and phosphatidylinositol 3-kinase pathways. An inhibitor of PKA but not of phosphatidylinositol 3-kinase blocked the PGE(2)-mediated protection of cells from ethanol-induced apoptosis, suggesting that a PKA pathway is mainly responsible for the PGE(2)-mediated inhibition of apoptosis. Based on these results, we considered that PGE(2) inhibited gastric irritant-induced apoptosis in gastric mucosal cells via induction of an increase in cAMP and activation of PKA, and that this effect was involved in the PGE(2)-mediated protection of the gastric mucosa from gastric irritants in vivo.  相似文献   

15.
AimsCyclooxygenase-2 (COX-2)-controlled production of prostaglandin E2 (PGE2) has been implicated in cell growth and metastasis in many cancers. Recent studies have found that COX-2 is co-expressed with survivin in many cancers. Survivin is a member of the inhibitor-of-apoptosis protein family. Some COX-2 inhibitors (e.g., celecoxib) can reduce the expression of survivin. However, little is known about the mechanism of PGE2-mediated expression of survivin. This study was designed to uncover the effect of PGE2 on survivin expression in hepatocellular carcinoma cells.Main methodsThe effects of PGE2 and EP1 agonist on survivin expression were examined in HUH-7 and HepG2 cells. Plasmid transfection and EP1 siRNA were used to regulate the expression of COX-2 and the EP1 receptor protein.Key findingsPGE2 treatment increased survivin expression 2.3-fold. COX-2 overexpression resulted in a similar level of survivin upregulation. However, this effect was suppressed by treatment with celecoxib. EP1 receptor transfection or treatment with a selective EP1 agonist mimicked the effect of PGE2 treatment. Conversely, the PGE2-induced upregulation of survivin was blocked by treatment with a selective EP1 antagonist or siRNA against the EP1 receptor. The phosphorylation of EGFR and Akt were elevated in EP1 agonist-treated cells, and both EGFR and PI3K inhibitors suppressed the upregulation of survivin induced by PGE2 or EP1 agonist.SignificancePGE2 regulates survivin expression in hepatocellular carcinoma cells through the EP1 receptor by activating the EGFR/PI3K pathway. Targeting the PGE2/EP1/survivin signaling pathway may aid the development of new therapeutic strategies for both the prevention and treatment of this cancer.  相似文献   

16.

Background  

Prostaglandins are important for female reproduction. Prostaglandin-E2 acts via four different receptor subtypes, EP1, EP2, EP3 and EP4 whereas prostaglandin-F2alpha acts through FP. The functions of prostaglandins depend on the expression of their receptors in different uterine cell types. Our aim was to investigate the expression of EPs and FP in rat uterus and to identify the regulation by estradiol, progesterone and estrogen receptor (ER) selective agonists.  相似文献   

17.

Background

In our earlier genome-wide association study on Stevens-Johnson Syndrome (SJS) and its severe variant, toxic epidermal necrolysis (TEN), we found that in Japanese patients with these severe ocular surface complications there was an association with prostaglandin E receptor 3 (EP3) gene (PTGER3) polymorphisms. We also reported that EP3 is dominantly expressed in the ocular surface-, especially the conjunctival epithelium, and suggested that EP3 in the conjunctival epithelium may down-regulate ocular surface inflammation. In the current study we investigated the expression of EP3 protein in the conjunctiva of patients with various ocular surface diseases such as SJS/TEN, chemical eye burns, Mooren’s ulcers, and ocular cicatricial pemphigoid (OCP).

Methodology/Principal Findings

Conjunctival tissues were obtained from patients undergoing surgical reconstruction of the ocular surface due to SJS/TEN, chemical eye burns, and OCP, and from patients with Mooren''s ulcers treated by resection of the inflammatory conjunctiva. The controls were nearly normal human conjunctival tissues acquired at surgery for conjunctivochalasis. We performed immunohistological analysis of the EP3 protein and evaluated the immunohistological staining of EP3 protein in the conjunctival epithelium of patients with ocular surface diseases. EP3 was expressed in the conjunctival epithelium of patients with chemical eye burns and Mooren’s ulcer and in normal human conjunctival epithelium. However, it was markedly down-regulated in the conjunctival epithelium of SJS/TEN and OCP patients.

Conclusions

We posit an association between the down-regulation of EP3 in conjunctival epithelium and the pathogenesis and pathology of SJS/TEN and OCP, and suggest a common mechanism(s) in the pathology of these diseases. The examination of EP3 protein expression in conjunctival epithelium may aid in the differential diagnosis of various ocular surface diseases.  相似文献   

18.
19.
Gastrointestinal ulcerogenic effect of indomethacin is causally related with an endogenous prostaglandin (PG) deficiency, yet the detailed mechanism remains unknown. We examined the effect of various PGE analogues specific to EP receptor subtypes on these lesions in rats and mice, and investigated which EP receptor subtype is involved in the protective action of PGE(2). Fasted or non-fasted animals were given indomethacin s.c. at 35 mg/kg for induction of gastric lesions or 10-30 mg/kg for intestinal lesions, and they were killed 4 or 24 h later, respectively. Various EP agonists were given i.v. 10 min before indomethacin. Indomethacin caused hemorrhagic lesions in both the stomach and intestine. Prior administration of 16,16-dimethyl PGE(2) (dmPGE(2)) prevented the development of damage in both tissues, and the effect in the stomach was mimicked by 17-phenyl PGE2 (EP1), while that in the small intestine was reproduced by ONO-NT-012 (EP3) and ONO-AE-329 (EP4). Butaprost (EP2) did not have any effect on either gastric or intestinal lesions induced by indomethacin. Similar to the findings in rats, indomethacin caused gastric and intestinal lesions in both wild-type and knockout mice lacking EP1 or EP3 receptors. However, the protective action of dmPGE(2) in the stomach was observed in wild-type and EP3 receptor knockout mice but not in mice lacking EP1 receptors, while that in the intestine was observed in EP1 knockout as well as wild-type mice but not in the animals lacking EP3 receptors. These results suggest that indomethacin produced damage in the stomach and intestine in a PGE(2)-sensitive manner, and exogenous PGE(2) prevents gastric and intestinal ulcerogenic response to indomethacin through different EP receptor subtypes; the protection in the stomach is mediated by EP1 receptors, while that in the intestine mediated by EP3/EP4 receptors.  相似文献   

20.

Background

The apical junctional complex (AJC) is a dynamic structure responsible to maintain epithelial cell-cell adhesions and it plays important functions such as, polarity, mechanical integrity, and cell signaling. Alteration of this complex during pathological events leads to an impaired epithelial barrier by perturbation of the cell-cell adhesion system. Although clinical and experimental data indicate that prostaglandin E2 (PGE2) plays a critical function in promoting cell motility and cancer progression, little is known concerning its role in AJC disassembly, an event that takes place at the beginning of colorectal tumorigenesis. Using Caco-2 cells, a cell line derived from human colorectal cancer, we investigated the effects of prostaglandin E2 (PGE2) treatment on AJC assembly and function.

Results

Exposition of Caco-2 cells to PGE2 promoted differential alteration of AJC protein distribution, as evidenced by immunofluorescence and immunoblotting analysis and impairs the barrier function, as seen by a decrease in the transepithelial electric resistance and an increase in the permeability to ruthenium red marker. We demonstrated the involvement of EP1 and EP2 prostaglandin E2 receptor subtypes in the modulation of the AJC disassembly caused by prostanoid. Furthermore, pharmacological inhibition of protein kinase-C, but not PKA and p38MAPK significantly prevented the PGE2 effects on the AJC disassembly.

Conclusion

Our findings strongly suggest a central role of Prostaglandin E2-EP1 and EP2 receptor signaling to mediate AJC disassembly through a mechanism that involves PKC and claudin-1 as important target for the TJ-related effects in human colorectal cancer cells (Caco-2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号