首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human multidrug resistance gene MDR1 encodes a membrane-bound protein, referred to as P-glycoprotein, that acts as a pump to extrude toxins from cells. The 3' untranslated region (3'UTR) of the human MDR1 mRNA is very AU-rich (70%) and contains AU-rich sequences similar to those shown to confer rapid decay on c-myc, c-fos, and lymphokine mRNAs. We tested the ability of the MDR1 3'UTR to act as an mRNA destabilizing element in the human hepatoma cell line HepG2. The MDR1 mRNA has an intermediate half-life of 8 h in HepG2 cells compared to a half-life of 30 min for c-myc mRNA. The MDR1 mRNA half-life was prolonged to >20 h upon treatment with the protein synthesis inhibitor cycloheximide. We constructed expression vectors containing the human beta-globin coding region with the 3'UTR from either MDR1 or c-myc. The c-myc 3'UTR increased the decay of the chimeric mRNA, but the MDR1 3'UTR had no effect. We tested the ability of MDR1 3'UTR sequences to compete for interaction with AU-binding proteins in cell extracts; MDR1 RNA probes had a fivefold lower affinity for AU-binding proteins that interact with the c-myc AU-rich 3'UTR. Overall, our data suggest that the MDR1 3'UTR does not behave as an active destabilizing element in HepG2 cells.  相似文献   

2.
3.
4.
Tacrolimus (Tac) is more immunosuppressive drug compared to cyclosporine (CsA). Our previous studies have demonstrated that CsA induces the expression of p21WAF/CIP1 expression. In this study we explored if like CsA, Tac also induces expression of p21WAF/CIP1. We also determined if induction of p21WAF/CIP1 by Tac is dependent on TGF-beta. Using RT-PCR and Western blot analysis, we studied the induction of p21WAF/CIP1 mRNA and protein in human T cells and A-549 cells (human lung adenocarcinoma cells) by Tac. The stimulation of p21WAF/CIP1 promoter activity was studied by luciferase assay using p21WAF/CIP1-luc, chimeric plasmid DNA containing a p21WAF/CIP1 promoter segment and luciferase reporter gene. Using anti-TGF-beta antibody, we studied if induction of p21WAF/CIP1 by tacrolimus is dependent on TGF-beta. The results demonstrate that Tac induced p21WAF/CIP1 mRNA and protein expression as well as stimulated its promoter activity in T cells and A-549 cells. The induction of p21WAF/CIP1 expression by tacrolimus was dependent on TGF-beta since a neutralizing anti-TGF-beta antibody inhibited induction of p21WAF/CIP1in A-549 cells. These data support the hypothesis that cyclin inhibitor p21WAF/CIP1 might represent a unified mediator of the anti-proliferative effects of Tac and other immunosuppressive agents. Strategies involving p21WAF/CIP1 induction should be considered a viable alternative strategy to achieve immunosuppression possibly with reduced toxicity associated with current immunosuppression.  相似文献   

5.
In LLC-PK1 cells urokinase-type plasminogen activator (uPA) mRNA has a short half-life. It is stabilized by inhibition of protein synthesis and by downregulation of protein kinase C (PKC). In the present study on uPA mRNA metabolism, we focused our attention on the 3' untranslated region (3'UTR) of the uPA mRNA, as this region is long and highly conserved among several mammalian species, including mice and humans. To investigate the possible role of the 3'UTR of uPA mRNA in mRNA metabolism, we inserted this region into the 3'UTR of the rabbit beta-globin gene that is linked to the cytomegalovirus promoter and stably transfected it into LLC-PK1 cells. While the parental globin mRNA was stable, the chimeric mRNA was degraded as rapidly as endogenous uPA mRNA, suggesting that the 3'UTR of uPA mRNA contains most of the information required for its rapid turnover. Further analysis showed that there are at least three independent determinants of instability in the 3'UTR; one is an AU-rich sequence located immediately 3' of the poly(A) addition signal, and one is a sequence containing a stem structure. One determinant seems to require ongoing RNA synthesis for its activity. All chimeric unstable globin mRNAs became stable in the presence of cycloheximide, a protein synthesis inhibitor, suggesting that the stabilization of mRNA by protein synthesis inhibition is not through a specific sequence in the mRNA. In PKC-downregulated cells, globin mRNAs with the complete 3'UTR or the AU-rich sequence were stabilized, suggesting that PKC downregulation stabilizes uPA mRNA through the AU-rich sequence. Here we discuss the significance of multiple, independently acting instability determinants in the regulation of uPA mRNA metabolism.  相似文献   

6.
7.
HMBA对人肝癌SMMC-7721细胞周期相关基因表达的影响   总被引:1,自引:0,他引:1  
本文研究HMBA对人肝癌SMMC-7721细胞周期G_0/G_1期阻滞相关基因表达的影响。免疫细胞化学和核酸原位杂交检测结果显示,HMBA可明显上调p21~(WAFl/CIPl)、p16蛋白表达并增强p21~(WAFl/CIPl)基因转录,同时对CDK4、Cyclin D1蛋白表达以及c-myc基因转录均具有明显的下调作用。结果表明,HMBA可通过增强p21~(WAFl/CIPl)、p16基因表达而抑制Cyclin D1-CDK4活性,最终导致细胞进入S期所需的c-myc等基因转录活性下降,从而将细胞周期阻滞于G_0/G_1期,诱导人肝癌细胞分化。  相似文献   

8.
HMBA对人肝癌SMMC—7721细胞周期相关基因表达的影响   总被引:5,自引:0,他引:5  
本文研究HMBA对人肝癌SMMC-7721细胞周期G0/G1期阻滞相关基因表达的影响。免疫细胞化学和核酸原位杂交检测结果显示,HMBA可明显上调p21^WAF1/CIP1、p16蛋白表达并增强p21^WAF1/CIP1基因转录,同时对CDK4、Cyclin D1蛋白表达以及c-myc基因转录均具有明显的下调作用。结果表明,HMBA可通过增强p21^WAF1/CIP1、p16基因表达而抑制Cyclin D1-CDK4活性,最终导致细胞进入S期所需的c-myc等基因转录活性下降,从而将细胞周期阻滞于G0/G1期,诱导人肝癌细胞分化。  相似文献   

9.
In the present study we show that IL-10-mediated inhibition of inflammatory gene expression can be mediated by an AU-rich element (ARE) cluster present in the 3' untranslated region (3'UTR) of sensitive genes. A series of chloramphenicol acetyl transferase (CAT) reporter gene constructs were prepared in which different fragments from the IL-10-sensitive KC mRNA 3'UTR were placed downstream of the coding region of the reporter gene CAT. CAT mRNA containing the KC 3'UTR was markedly destabilized as compared with the control CAT mRNA, and the decay rate was further increased in cells stimulated with IL-10. The KC 3'UTR contains an ARE cluster and three isolated ARE motifs. The ARE cluster spanning nucleotides 378-399 appeared to be both necessary and sufficient to mediate sensitivity to IL-10 because a 116-nucleotide fragment that contains the cluster conferred sensitivity, while mutation of the sequence between positions 378 and 399 eliminated sensitivity. The destabilizing effect of IL-10 was relatively selective, as the stability of chimeric CAT mRNAs was not modulated in cells treated with IFN-gamma or IL-4.  相似文献   

10.
Estrogen rapidly induces expression of the proto-oncogene c-myc. c-Myc is required for estrogen-stimulated proliferation of breast cancer cells, and deregulated c-Myc expression has been implicated in antiestrogen resistance. In this report, we investigate the mechanism(s) by which c-Myc mediates estrogen-stimulated proliferation and contributes to cell cycle progression in the presence of antiestrogen. The MCF-7 cell line is a model of estrogen-dependent, antiestrogen-sensitive human breast cancer. Using stable MCF-7 derivatives with inducible c-Myc expression, we demonstrated that in antiestrogen-treated cells, the elevated mRNA and protein levels of p21(WAF1/CIP1), a cell cycle inhibitor, decreased upon either c-Myc induction or estrogen treatment. Expression of p21 blocked c-Myc-mediated cell cycle progression in the presence of antiestrogen, suggesting that the decrease in p21 is necessary for this process. Using RNA interference to suppress c-Myc expression, we further established that c-Myc is required for estrogen-mediated decreases in p21(WAF1/CIP1). Finally, we observed that neither c-Myc nor p21(WAF1/CIP1) is regulated by estrogen or antiestrogen in an antiestrogen-resistant MCF-7 derivative. The p21 levels in the antiestrogen-resistant cells increased when c-Myc expression was suppressed, suggesting that loss of p21 regulation was a consequence of constitutive c-Myc expression. Together, these studies implicate p21(WAF1/CIP1) as an important target of c-Myc in breast cancer cells and provide a link between estrogen, c-Myc, and the cell cycle machinery. They further suggest that aberrant c-Myc expression, which is frequently observed in human breast cancers, can contribute to antiestrogen resistance by altering p21(WAF1/CIP1) regulation.  相似文献   

11.
We have previously found that bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta family, induces cell-cycle arrest in the G1 phase and apoptotic cell death of HS-72 mouse hybridoma cells. In this study, we show that BMP-2 did not alter expression of cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4, p27KIP1, p16INK4a, or p15INK4b, but enhanced expression of p21(CIP1/WAF1). Accumulation of p21(CIP1/WAF1) resulted in increased binding of p21(CIP1/WAF1) to CDK4 and concomitantly caused a profound decrease in the in vitro retinoblastoma protein (Rb) kinase activity of CDK4. Furthermore, the ectopic expression of human papilloma virus type-16 E7, an inhibitor of p21(CIP1/WAF1) and Rb, reverted G1 arrest induced by BMP-2. Expression of E6/E7, without increasing the p53 level, blocked inhibition of Rb phosphorylation and G1 arrest, but did not attenuate cell death in BMP-treated HS-72 cells. Taken together, these results suggest that inhibition of Rb phosphorylation by p21(CIP1/WAF1) is responsible for BMP-2-mediated G1 arrest and that BMP-2-induction of apoptosis might be independent of Rb hypophosphorylation.  相似文献   

12.
Rat-1 cells are used in many studies on transformation, cell cycle, and apoptosis. Whereas UV treatment of Rat-1 cells results in apoptosis, X-ray treatment does not induce either apoptosis or a cell cycle block. X-ray treatment of Rat-1 cells results in both an increase of p53 protein and expression of the p53-inducible gene MDM2 but not the protein or mRNA of the p53-inducible p21(WAF1/CIP1) gene, which in other cells plays an important role in p53-mediated cell cycle block. The lack of p21(WAF1/CIP1) expression appears to be the result of hypermethylation of the p21(WAF1/CIP1) promoter region, as p21(WAF1/CIP1) protein expression could be induced by growth of Rat-1 cells in the presence of 5-aza-2-deoxycytidine. Furthermore, sequence analysis of bisulfite-treated DNA demonstrated extensive methylation of cytosine residues in CpG dinucleotides in a CpG-rich island in the promoter region of the p21(WAF1/CIP1) gene. Stable X-ray-induced p53-dependent p21(WAF1/CIP1) expression and cell cycle block were restored to a Rat-1 clone after transfection with a P1 artificial chromosome (PAC) DNA clone containing a rat genomic copy of the p21(WAF1/CIP1) gene. The absence of expression of the p21(WAF1/CIP1) gene may contribute to the suitability of Rat-1 cells for transformation, cell cycle, and apoptosis studies.  相似文献   

13.
14.
G D Schuler  M D Cole 《Cell》1988,55(6):1115-1122
Regulation of mRNA turnover has emerged as an important control point in lymphokine and oncogene expression. We have studied a monocytic tumor in which activation of GM-CSF expression results from the constitutive stabilization of the normally short-lived GM-CSF mRNA. Linkage of the germ-line 3' untranslated region of the GM-CSF gene to a neo reporter gene demonstrated that mRNA stabilization is mediated by a tumor-specific trans-acting factor(s), rather than by an alteration of the GM-CSF gene itself. Significantly, similar fusions of the c-myc and c-fos 3' untranslated regions to neo yielded mRNAs that turned over rapidly in all cells, including the tumor cells. These results demonstrate that AU-rich mRNA turnover signals are recognized differentially in trans within the same cell.  相似文献   

15.
c-myc mRNA contains at least two discrete sequence elements that account for its short half-life, one in the 3' untranslated region and the other in the carboxy-terminal coding region (coding-region determinant). To investigate the function of each determinant, one or both were fused in frame to portions of a gene encoding long-lived beta-globin mRNA. Each chimeric gene was stably transfected into HeLa and NIH 3T3 cells and was transcribed from a constitutive cytomegalovirus promoter or from a serum-regulated c-fos promoter, respectively. The steady-state levels of the chimeric mRNAs in exponentially growing HeLa cells were compared, and their half-lives were measured by two independent methods: (i) in actinomycin D-treated HeLa cells and (ii) after serum addition to starved 3T3 cells. By each method, mRNAs containing either instability determinant were less stable than beta-globin mRNA. mRNA containing only the c-myc 3' untranslated region was not significantly more stable than mRNA with both determinants. In a cell-free mRNA decay system containing polysomes from transfected HeLa cells, mRNA containing the coding-region determinant was destabilized by addition of a specific RNA competitor, whereas mRNA containing only the 3' untranslated region was unaffected. When a stop codon was inserted upstream of the coding-region determinant, the chimeric mRNA was stabilized approximately twofold. These and other data suggest that degradation involving the coding-region determinant occurs most efficiently when ribosomes are translating the determinant.  相似文献   

16.
It has been reported that both c-fos and c-myc mRNAs are induced in NIH/3T3 cells after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. We have studied the effect of TPA on the expression of c-fos and c-myc in EJ-ras-transformed NIH/3T3 and its nontumorigenic flat revertant R1 cells. Although TPA treatment induces c-myc mRNA, as in the case of NIH/3T3 cells, the induced level of c-fos mRNA is greatly reduced not only in slow-growing EJ-ras-transformed NIH/3T3 but also in quiescent R1 cells. In addition, serum-induced c-fos expression is also reduced in EJ-ras-transformed NIH/3T3 and R1 cells. These observations suggest that the pathway from TPA to c-fos gene is different from that to c-myc gene and that the former pathway is down-regulated in association not with the transformed phenotype, but with EJ-ras expression, and it is possible that this reduced induction of c-fos is not specific to TPA.  相似文献   

17.
18.
19.
视黄酸对胃癌细胞周期的调控   总被引:3,自引:0,他引:3  
Retinoic acid can induce growth inhibition and apoptosis, and regulate cell cycle in many types of cancer cell lines. In this study, we investigated the role of all-trans retinoic acid (ATRA) and its mechanism of action in human gastric cancer cell lines. Our results demonstrated that ATRA effectively inhibited growth in three of four gastric cancer cell lines by induction of G0/G1 arrest, and did not induce apoptosis in four gastric cancer cell lines. In RA-sensitive cell lines, ATRA-induced G0/G1 arrest is associated with down regulaton of c-myc and hyperphosphorylated Rb expression, and up regulation of p21WAF1/CIP1 and p53 expression. There were no significant changes in cyclin D1 or CDK4 expression induced by ATRA. Futhermore, expression of these genes were not regulated by ATRA in ATRA-resistant gastric cancer cell line. These results indicate that growth inhibition, rather than apoptosis, is correlated with G0/G1 arrest of these cell lines, more important molecules related cell cycle, including c-myc, p21WAF1/CIP1, p53 and Rb, are involveed in regulation of cell cycle in gastric cancer cells.  相似文献   

20.
MicroRNAs (miRNAs) are a class of noncoding small RNAs that act as negative regulators of gene expression. To identify miRNAs that may regulate human cell immortalization and carcinogenesis, we performed comparative miRNA array profiling of human normal and SV40-T antigen immortalized cells. We found that miR-296 was upregulated in immortalized cells that also had activation of telomerase. By an independent experiment on genomic analysis of cancer cells we found that chromosome region (20q13.32), where miR-296 is located, was amplified in 28/36 cell lines, and most of these showed enriched miR-296 expression. Overexpression of miR-296 in human cancer cells, with and without telomerase activity, had no effect on their telomerase function. Instead, it suppressed p53 function that is frequently downregulated during human cell immortalization and carcinogenesis. By monitoring the activity of a luciferase reporter connected to p53 and p21(WAF1) (p21) untranslated regions (UTRs), we demonstrate that miR-296 interacts with the p21-3'UTR, and the Hu binding site of p21-3'UTR was identified as a potential miR-296 target site. We demonstrate for the first time that miR-296 is frequently upregulated during immortalization of human cells and contributes to carcinogenesis by downregulation of p53-p21(WAF1) pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号