首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral attachment to specific host receptors is the first step in viral infection and serves an essential function in the selection of target cells. Mammalian reoviruses are highly useful experimental models for studies of viral pathogenesis and show promise as vectors for oncolytics and vaccines. Reoviruses engage cells by binding to carbohydrates and the immunoglobulin superfamily member, junctional adhesion molecule-A (JAM-A). JAM-A exists at the cell surface as a homodimer formed by extensive contacts between its N-terminal immunoglobulin-like domains. We report the crystal structure of reovirus attachment protein σ1 in complex with a soluble form of JAM-A. The σ1 protein disrupts the JAM-A dimer, engaging a single JAM-A molecule via virtually the same interface that is used for JAM-A homodimerization. Thus, reovirus takes advantage of the adhesive nature of an immunoglobulin-superfamily receptor by usurping the ligand-binding site of this molecule to attach to the cell surface. The dissociation constant (KD) of the interaction between σ1 and JAM-A is 1,000-fold lower than that of the homophilic interaction between JAM-A molecules, indicating that JAM-A strongly prefers σ1 as a ligand. Analysis of reovirus mutants engineered by plasmid-based reverse genetics revealed residues in σ1 required for binding to JAM-A and infectivity of cultured cells. These studies define biophysical mechanisms of reovirus cell attachment and provide a platform for manipulating reovirus tropism to enhance vector targeting.  相似文献   

2.
Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein μ1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of μ1 indicates that the μ1 ϕ domain is sufficient to elicit a cell death response. To evaluate the contribution of the μ1 ϕ domain to the induction of apoptosis following reovirus infection, ϕ mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in ϕ diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in ϕ affect the apoptotic potential of reovirus, suggesting that ϕ initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective ϕ mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the ϕ domain of μ1 plays an important regulatory role in reovirus-induced apoptosis and disease.  相似文献   

3.
Mammalian orthoreoviruses use glycans and junctional adhesion molecule A (JAM-A) as attachment receptors. We determined the structure of serotype 1 reovirus attachment protein σ1 alone and in complex with JAM-A. Comparison with the structure of serotype 3 reovirus σ1 bound to JAM-A reveals that both σ1 proteins engage JAM-A with similar affinities and via conserved binding epitopes. Thus, σ1–JAM-A interactions are unlikely to explain the differences in pathogenesis displayed by these reovirus serotypes.  相似文献   

4.
5.
Apoptosis is a type of controlled cell death that is essential for development and tissue homeostasis. It also serves as a robust host response against infection by many viruses. The capacity of neurotropic viruses to induce apoptosis strongly correlates with virulence. However, the precise function of apoptosis in viral infection is not well understood. Reovirus is a neurotropic virus that induces apoptosis in a variety of cell types, including central nervous system neurons, leading to fatal encephalitis in newborn mice. To determine the effect of apoptosis on reovirus replication in the host, we generated two otherwise isogenic viruses that differ in a single amino acid in viral capsid protein μ1 that segregates with apoptotic capacity. Apoptosis-proficient and apoptosis-deficient viruses were compared for replication, dissemination, tropism, and tissue injury in newborn mice and for the capacity to spread to uninfected littermates. Our results indicate that apoptotic capacity enhances reovirus replication in the brain and consequent neurovirulence but reduces transmission efficiency. The replication advantage of the apoptosis-proficient strain is limited to the brain and correlates with enhanced infectivity of neurons. These studies reveal a new cell type-specific determinant of reovirus virulence.  相似文献   

6.
Reovirus nonstructural protein σ1s is implicated in cell cycle arrest at the G2/M boundary and induction of apoptosis. However, the contribution of σ1s to these effects in an otherwise isogenic viral background has not been defined. To evaluate the role of σ1s in cell cycle arrest and apoptosis, we used reverse genetics to generate a σ1s-null reovirus. Following infection with wild-type virus, we observed an increase in the percentage of cells in G2/M, whereas the proportion of cells in G2/M following infection with the σ1s-null mutant was unaffected. Similarly, we found that the wild-type virus induced substantially greater levels of apoptosis than the σ1s-null mutant. These data indicate that σ1s is required for both reovirus-induced cell cycle arrest and apoptosis. To define sequences in σ1s that mediate these effects, we engineered viruses encoding C-terminal σ1s truncations by introducing stop codons in the σ1s open reading frame. We also generated viruses in which charged residues near the σ1s amino terminus were replaced individually or as a cluster with nonpolar residues. Analysis of these mutants revealed that amino acids 1 to 59 and the amino-terminal basic cluster are required for induction of both cell cycle arrest and apoptosis. Remarkably, viruses that fail to induce cell cycle arrest and apoptosis also are attenuated in vivo. Thus, identical sequences in σ1s are required for reovirus-induced cell cycle arrest, apoptosis, and pathogenesis. Collectively, these findings provide evidence that the σ1s-mediated properties are genetically linked and suggest that these effects are mechanistically related.  相似文献   

7.
The reovirus ς1s protein is a 14-kDa nonstructural protein encoded by the S1 gene segment. The S1 gene has been linked to many properties of reovirus, including virulence and induction of apoptosis. Although the function of ς1s is not known, the ς1s open reading frame is conserved in all S1 gene sequences determined to date. In this study, we identified and characterized a variant of type 3 reovirus, T3C84-MA, which does not express ς1s. To facilitate these experiments, we generated two monoclonal antibodies (MAbs) that bind different epitopes of the ς1s protein. Using these MAbs in immunoblot and immunofluorescence assays, we found that L929 (L) cells infected with T3C84-MA do not contain ς1s. To determine whether ς1s is required for reovirus infection of cultured cells, we compared the growth of T3C84-MA and its parental strain, T3C84, in L cells and Madin-Darby canine kidney (MDCK) cells. After 48 h of growth, yields of T3C84-MA were equivalent to yields of T3C84 in L cells and were fivefold lower than yields of T3C84 in MDCK cells. After 7 days of growth following adsorption at a low multiplicity of infection, yields of T3C84-MA and T3C84 did not differ significantly in either L cells or MDCK cells. To determine whether ς1s is required for apoptosis induced by reovirus infection, T3C84-MA and T3C84 were tested for their capacity to induce apoptosis, using an acridine orange staining assay. In these experiments, the percentages of apoptotic cells following infection with T3C84-MA and T3C84 were equivalent. These findings indicate that nonstructural protein ς1s is not required for reovirus growth in cell culture and does not influence the capacity of reovirus to induce apoptosis. Therefore, reovirus replication does not require the full complement of virally encoded proteins.  相似文献   

8.
Apoptosis regulation is essential for neutrophil homeostasis. We previously demonstrated that a process involving glycogen synthase kinase (GSK)-3β determines neutrophil apoptosis. As for this apoptotic process, an overdose of propofol (2,6-Diisopropylphenol; 25 μg/ml or 140 μM) also causes GSK-3β-mediated macrophage apoptosis; however, the early deactivation of GSK-3β with low-dose propofol has been shown. Therefore, we hypothesize that low-dose propofol may induce neutrophil survival via GSK-3β inactivation. Following in vitro culture, the therapeutic concentration of propofol (10 μg/ml or 56 μM) treatment decreased constitutive apoptosis in isolated human primary neutrophils and in granulocyte-differentiated HL60 cells after all-trans retinoic acid (1 μM) treatment. The inactivation of phosphatidylinositol 3-kinase (PI3-kinase)/AKT and the activation of GSK-3β results in myeloid cell leukemia 1 (Mcl-1) down-regulation, the loss of the mitochondrial transmembrane potential, and caspase-3 activation in these cells, which is accompanied by apoptosis. Notably, propofol treatment attenuates these effects in a PI3-kinase-regulated manner. We found that propofol initiates PI3-kinase/AKT-mediated GSK-3β inactivation and Mcl-1 stabilization, rescuing the constitutive apoptosis in primary neutrophils and granulocyte-differentiated acute promyelocytic leukemia HL60 cells.  相似文献   

9.
Reovirus is a nonenveloped mammalian virus that provides a useful model system for studies of viral infections in the young. Following internalization into host cells, the outermost capsid of reovirus virions is removed by endosomal cathepsin proteases. Determinants of capsid disassembly kinetics reside in the viral σ3 protein. However, the contribution of capsid stability to reovirus-induced disease is unknown. In this study, we found that mice inoculated intramuscularly with a serotype 3 reovirus containing σ3-Y354H, a mutation that reduces viral capsid stability, succumbed at a higher rate than those infected with wild-type virus. At early times after inoculation, σ3-Y354H virus reached higher titers than wild-type virus at several sites within the host. Animals inoculated perorally with a serotype 1 reassortant reovirus containing σ3-Y354H developed exaggerated myocarditis accompanied by elaboration of pro-inflammatory cytokines. Surprisingly, unchallenged littermates of mice infected with σ3-Y354H virus displayed higher titers in the intestine, heart, and brain than littermates of mice inoculated with wild-type virus. Together, these findings suggest that diminished capsid stability enhances reovirus replication, dissemination, lethality, and host-to-host spread, establishing a new virulence determinant for nonenveloped viruses.  相似文献   

10.
11.
Reovirus infection is initiated by interactions between the attachment protein sigma1 and cell surface carbohydrate and junctional adhesion molecule A (JAM-A). Expression of a JAM-A mutant lacking a cytoplasmic tail in nonpermissive cells conferred full susceptibility to reovirus infection, suggesting that cell surface molecules other than JAM-A mediate viral internalization following attachment. The presence of integrin-binding sequences in reovirus outer capsid protein lambda2, which serves as the structural base for sigma1, suggests that integrins mediate reovirus endocytosis. A beta1 integrin-specific antibody, but not antibodies specific for other integrin subunits, inhibited reovirus infection of HeLa cells. Expression of a beta1 integrin cDNA, along with a cDNA encoding JAM-A, in nonpermissive chicken embryo fibroblasts conferred susceptibility to reovirus infection. Infectivity of reovirus was significantly reduced in beta1-deficient mouse embryonic stem cells in comparison to isogenic cells expressing beta1. However, reovirus bound equivalently to cells that differed in levels of beta1 expression, suggesting that beta1 integrins are involved in a postattachment entry step. Concordantly, uptake of reovirus virions into beta1-deficient cells was substantially diminished in comparison to viral uptake into beta1-expressing cells. These data provide evidence that beta1 integrin facilitates reovirus internalization and suggest that viral entry occurs by interactions of reovirus virions with independent attachment and entry receptors on the cell surface.  相似文献   

12.
The local synthesis of dopamine and its effects on insulin release have been described in isolated islets. Thus, it may be accepted that dopamine exerts an auto-paracrine regulation of insulin secretion from pancreatic beta cells. The aim of the present study is to analyze whether dopamine is a regulator of the proliferation and apoptosis of rat pancreatic beta cells after glucose-stimulated insulin secretion. Glucose stimulated pancreatic islets obtained from male Wistar rats were cultured with 1 or 10 μM dopamine from 1 to 12 h. Insulin secretion was analyzed by RIA. The cellular proliferation rate of pancreatic islets and beta cells was studied with immunocytochemical double labelling for both insulin and PCNA (proliferating cell nuclear antigen), and active caspase-3 was detected to evaluate apoptosis. The secretion of insulin from isolated islets was significantly inhibited (p<0.01), by treatment with 1 and 10 μM dopamine, with no differences between either dose as early as 1 h after treatment. The percentage of insulin-positive cells in the islets decreased significantly (p<0.01) after 1 h of treatment up to 12 h. The proliferation rate of insulin-positive cells in the islets decreased significantly (p<0.01) following treatment with dopamine. Apoptosis in pancreatic islets and beta cells was increased by treatment with 1 and 10 μM dopamine along 12 h. In conclusion, these results suggest that dopamine could modulate the proliferation and apoptosis of pancreatic beta cells and that dopamine may be involved in the maintenance of pancreatic islets.  相似文献   

13.
Reovirus-induced acute myocarditis in mice serves as a model to investigate non-immune-mediated mechanisms of viral myocarditis. We have used primary cardiac myocyte cultures infected with a large panel of myocarditic and nonmyocarditic reassortant reoviruses to identify determinants of viral myocarditic potential. Here, we report that while both myocarditic and nonmyocarditic reoviruses kill cardiac myocytes, viral myocarditic potential correlates with viral spread through cardiac myocyte cultures and with cumulative cell death. To address the role of secreted interferon (IFN), we added anti-IFN-α/β antibody to infected cardiac myocyte cultures. Antibody benefited nonmyocarditic more than myocarditic virus spread (P < 0.001), and this benefit was associated with the reovirus M1 and L2 genes. There was no benefit for a differentiated skeletal muscle cell line culture (C2C12 cells), suggesting cell type specificity. IFN-β induction in reovirus-infected cardiac myocyte cultures correlated with viral myocarditic potential (P = 0.006) and was associated with the reovirus M1, S2, and L2 genes. Sensitivity to the antiviral effects of IFN-α/β added to cardiac myocyte cultures also correlated with viral myocarditic potential (P = 0.004) and was associated with the same reovirus genes. Several reoviruses induced IFN-β levels discordant with their myocarditic phenotypes, and for those tested, sensitivity to IFN-α/β compensated for the anomalous induction levels. Thus, the combination of induction of and sensitivity to IFN-α/β is a determinant of reovirus myocarditic potential. Finally, a nonmyocarditic reovirus induced cardiac lesions in mice depleted of IFN-α/β, demonstrating that IFN-α/β is a determinant of reovirus-induced myocarditis. This provides the first identification of reovirus genes associated with IFN induction and sensitivity and provides the first evidence that IFN-β can be a determinant of viral myocarditis and reovirus disease.  相似文献   

14.
Mammalian Reovirus is a double-stranded RNA virus with a distinctive preference to replicate in and lyse transformed cells. On that account, Reovirus type 3 Dearing (T3D) is clinically evaluated as oncolytic agent. The therapeutic efficacy of this approach depends in part on the accessibility of the reovirus receptor Junction Adhesion Molecule-A (JAM-A) on the target cells. Here, we describe the isolation and characterization of reovirus T3D mutants that can infect human tumor cells independent of JAM-A. The JAM-A-independent (jin) mutants were isolated on human U118MG glioblastoma cells, which do not express JAM-A. All jin mutants harbour mutations in the S1 segments close to the region that encodes the sialic acid-binding pocket in the shaft of the spike protein. In addition, two of the jin mutants encode spike proteins with a Q336R substitution in their head domain. The jin mutants can productively infect a wide range of cell lines that resist wt reovirus T3D infection, including chicken LMH cells, hamster CHO cells, murine endothelioma cells, human U2OS and STA-ET2.1 cells, but not primary human fibroblasts. The jin-mutants rely on the presence of sialic-acid residues on the cell surface for productive infection, as is evident from wheat germ agglutinin (WGA) inhibition experiments, and from the jin-reovirus resistance of CHO-Lec2 cells, which have a deficiency of sialic-acids on their glycoproteins. The jin mutants may be useful as oncolytic agents for use in tumors in which JAM-A is absent or inaccessible.  相似文献   

15.
Immunoreceptor tyrosine-based activation motifs (ITAMs) are signaling domains located within the cytoplasmic tails of many transmembrane receptors and associated adaptor proteins that mediate immune cell activation. ITAMs also have been identified in the cytoplasmic tails of some enveloped virus glycoproteins. Here, we identified ITAM sequences in three mammalian reovirus proteins: μ2, σ2, and λ2. We demonstrate for the first time that μ2 is phosphorylated, contains a functional ITAM, and activates NF-κB. Specifically, μ2 and μNS recruit the ITAM-signaling intermediate Syk to cytoplasmic viral factories and this recruitment requires the μ2 ITAM. Moreover, both the μ2 ITAM and Syk are required for maximal μ2 activation of NF-κB. A mutant virus lacking the μ2 ITAM activates NF-κB less efficiently and induces lower levels of the downstream antiviral cytokine beta interferon (IFN-β) than does wild-type virus despite similar replication. Notably, the consequences of these μ2 ITAM effects are cell type specific. In fibroblasts where NF-κB is required for reovirus-induced apoptosis, the μ2 ITAM is advantageous for viral spread and enhances viral fitness. Conversely, in cardiac myocytes where the IFN response is critical for antiviral protection and NF-κB is not required for apoptosis, the μ2 ITAM stimulates cellular defense mechanisms and diminishes viral fitness. Together, these results suggest that the cell type-specific effect of the μ2 ITAM on viral spread reflects the cell type-specific effects of NF-κB and IFN-β. This first demonstration of a functional ITAM in a nonenveloped virus presents a new mechanism for viral ITAM-mediated signaling with likely organ-specific consequences in the host.  相似文献   

16.
The presence of α2,6-sialic acids on the Fc N-glycan provides anti-inflammatory properties to the IgGs through a mechanism that remains unclear. Fc-sialylated IgGs are rare in humans as well as in industrial host cell lines such as Chinese hamster ovary (CHO) cells. Facilitated access to well-characterized α2,6-sialylated IgGs would help elucidate the mechanism of this intriguing IgG''s effector function. This study presents a method for the efficient Fc glycan α2,6-sialylation of a wild-type and a F243A IgG1 mutant by transient co-expression with the human α2,6-sialyltransferase 1 (ST6) and β1,4-galactosyltransferase 1 (GT) in CHO cells. Overexpression of ST6 alone only had a moderate effect on the glycoprofiles, whereas GT alone greatly enhanced Fc-galactosylation, but not sialylation. Overexpression of both GT and ST6 was necessary to obtain a glycoprofile dominated by α2,6-sialylated glycans in both antibodies. The wild-type was composed of the G2FS(6)1 glycan (38%) with remaining unsialylated glycans, while the mutant glycoprofile was essentially composed of G2FS(6)1 (25%), G2FS(3,6)2 (16%) and G2FS(6,6)2 (37%). The α2,6-linked sialic acids represented over 85% of all sialic acids in both antibodies. We discuss how the limited sialylation level in the wild-type IgG1 expressed alone or with GT results from the glycan interaction with Fc''s amino acid residues or from intrinsic galactosyl- and sialyl-transferases substrate specificities.  相似文献   

17.
JAM-A belongs to a family of immunoglobulin-like proteins called junctional adhesion molecules (JAMs) that localize at epithelial and endothelial intercellular tight junctions. JAM-A is also expressed on dendritic cells, neutrophils, and platelets. Homophilic JAM-A interactions play an important role in regulating paracellular permeability and leukocyte transmigration across epithelial monolayers and endothelial cell junctions, respectively. In addition, JAM-A is a receptor for the reovirus attachment protein, sigma1. In this study, we used single molecular force spectroscopy to compare the kinetics of JAM-A interactions with itself and sigma1. A chimeric murine JAM-A/Fc fusion protein and the purified sigma1 head domain were used to probe murine L929 cells, which express JAM-A and are susceptible to reovirus infection. The bond half-life (t(1/2)) of homophilic JAM-A interactions was found to be shorter (k(off)(o) = 0.688 +/- 0.349 s(-1)) than that of sigma1/JAM-A interactions (k(off)(o) = 0.067 +/- 0.041 s(-1)). These results are in accordance with the physiological functions of JAM-A and sigma1. A short bond lifetime imparts a highly dynamic nature to homophilic JAM-A interactions for regulating tight junction permeability while stable interactions between sigma1 and JAM-A likely anchor the virus to the cell surface and facilitate viral entry.  相似文献   

18.
Reovirus induces apoptosis in cultured cells and in vivo. Genetic studies indicate that the efficiency with which reovirus strains induce apoptosis is determined by the viral S1 gene, which encodes attachment protein sigma1. However, the biochemical properties of sigma1 that influence apoptosis induction are unknown. To determine whether the capacity of sigma1 to bind cell surface sialic acid determines the magnitude of the apoptotic response, we used isogenic reovirus mutants that differ in the capacity to engage sialic acid. We found that T3SA+, a virus capable of binding sialic acid, induces high levels of apoptosis in both HeLa cells and L cells. In contrast, non-sialic-acid-binding strain T3SA- induces little or no apoptosis in these cell types. Differences in the capacity of T3SA- and T3SA+ to induce apoptosis are not due to differences in viral protein synthesis or production of viral progeny. Removal of cell surface sialic acid with neuraminidase abolishes the capacity of T3SA+ to induce apoptosis. Similarly, incubation of T3SA+ with sialyllactose, a trisaccharide comprised of lactose and sialic acid, blocks apoptosis. These findings demonstrate that reovirus binding to cell surface sialic acid is a critical requirement for the efficient induction of apoptosis and suggest that virus receptor utilization plays an important role in regulating cell death.  相似文献   

19.
The reovirus outer capsid protein μ1 forms a lattice surrounding the viral core. In the native state, μ1 determines the environmental stability of the viral capsid. Additionally, during cell entry, μ1 undergoes structural rearrangements that facilitate delivery of the viral cores across the membrane. To determine how the capsid-stabilizing functions of μ1 impinge on the capacity of μ1 to undergo conformational changes required for cell entry, we characterized viruses with mutations engineered at charged residues within the μ1 loop formed by residues 72 to 96 (72-96 loop). This loop is proposed to stabilize the capsid by mediating interactions between neighboring μ1 trimers and between trimers and the core. We found that mutations at Glu89 (E89) within this loop produced viruses with compromised efficiency for completing their replication cycle. ISVPs of E89 mutants converted to ISVP*s more readily than those of wild-type viruses. The E89 mutants yielded revertants with second-site substitutions within regions that mediate interaction between μ1 trimers at a site distinct from the 72-96 loop. These viruses also contained changes in regions that control interactions within μ1 trimers. Viruses containing these second-site changes displayed restored plaque phenotypes and were capable of undergoing ISVP-to-ISVP* conversion in a regulated manner. These findings highlight regions of μ1 that stabilize the reovirus capsid and demonstrate that an enhanced propensity to form ISVP*s in an unregulated manner compromises viral fitness.  相似文献   

20.
The linking of ethacrynic acid with ethylenediamine and 1,4-butanediamine gave EDEA and BDEA, respectively, as membrane-permeable divalent pro-inhibitors of glutathione S-transferase (GST). Their divalent glutathione conjugates showed subnanomolar inhibition and divalence-binding to GSTmu (GSTM) (PDB: 5HWL) at ∼0.35 min−1. In cisplatin-resistant SK-OV-3, COC1, SGC7901 and A549 cells, GSTM activities probed by 15 nM BDEA or EDEA revealed 5-fold and 1.0-fold increases in cisplatin-resistant SK-OV-3 and COC1 cells, respectively, in comparison with the susceptible parental cells. Being tolerable by HEK293 and LO2 cells, BDEA at 0.2 μM sensitised resistant SK-OV-3 and COC1 cells by ∼3- and ∼5-folds, respectively, released cytochrome c and increased apoptosis; EDEA at 1.0 μM sensitised resistant SK-OV-3 and A549 cells by ∼5- and ∼7-fold, respectively. EDEA at 1.7 μg/g sensitised resistant SK-OV-3 cells to cisplatin at 3.3 μg/g in nude mouse xenograft model. BDEA and EDEA are promising leads for probing cellular GSTM and sensitising cisplatin-resistant ovarian cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号