首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize (Zea mays L.) breeders evaluate many single-cross hybrids each year in multiple environments. Our objective was to determine the usefulness of genomewide predictions, based on marker effects from maize single-cross data, for identifying the best untested single crosses and the best inbreds within a biparental cross. We considered 479 experimental maize single crosses between 59 Iowa Stiff Stalk Synthetic (BSSS) inbreds and 44 non-BSSS inbreds. The single crosses were evaluated in multilocation experiments from 2001 to 2009 and the BSSS and non-BSSS inbreds had genotypic data for 669 single nucleotide polymorphism (SNP) markers. Single-cross performance was predicted by a previous best linear unbiased prediction (BLUP) approach that utilized marker-based relatedness and information on relatives, and from genomewide marker effects calculated by ridge-regression BLUP (RR-BLUP). With BLUP, the mean prediction accuracy (r MG) of single-cross performance was 0.87 for grain yield, 0.90 for grain moisture, 0.69 for stalk lodging, and 0.84 for root lodging. The BLUP and RR-BLUP models did not lead to r MG values that differed significantly. We then used the RR-BLUP model, developed from single-cross data, to predict the performance of testcrosses within 14 biparental populations. The r MG values within each testcross population were generally low and were often negative. These results were obtained despite the above-average level of linkage disequilibrium, i.e., r 2 between adjacent markers of 0.35 in the BSSS inbreds and 0.26 in the non-BSSS inbreds. Overall, our results suggested that genomewide marker effects estimated from maize single crosses are not advantageous (compared with BLUP) for predicting single-cross performance and have erratic usefulness for predicting testcross performance within a biparental cross.  相似文献   

2.
RFLP markers and predicted testcross performance of maize sister inbreds   总被引:1,自引:0,他引:1  
 Inbreds selfed from the same F2 or backcross population are referred to as sister inbreds. In some situations, maize (Zea mays L.) sister inbreds may not have testcross data available for best linear unbiased prediction (BLUP) of single-cross performance. This study evaluated the usefulness of BLUP and restriction fragment length polymorphism (RFLP)-based coefficients of coancestry ( f ) in predicting the testcross performance of sister inbreds. Parental contributions (p) were estimated from 70 RFLP loci for 15 inbreds that comprised three sister inbreds selfed from each of five F2 populations. Estimates of p were subsequently used to calculate RFLP-based f. Grain yield, moisture, and stalk lodging data were obtained for 2265 single crosses tested by Limagrain Genetics in multilocation trials from 1990 to 1995. Performance of the sister inbreds when crossed to several inbred testers was predicted from the performance of the tested single crosses and RFLP-based f. Correlations between predicted and observed performance, obtained with a delete-one cross-validation procedure, were erratic and mostly low for all three traits. Correspondence was poor between ranks for predicted and observed general combining ability of the sister inbreds. The results suggested that the proportion of the genome derived by a sister inbred from a given parental inbred does not solely determine its testcross performance. The failure of BLUP and RFLP-based f to consistently predict testcross performance indicated that actual field testing will continue to be necessary for preliminary evaluation of sister inbreds. Received : 17 March 1997 / Accepted : 18 April 1997  相似文献   

3.
Summary A backcross population (NZS1) of maize (Zea mays L.) was produced by crossing a highland Mexican population with the elite Corn Belt Dent synthetic AS3, and then by backcrossing to AS3. S1 lines, S2 lines, and S2 testcrosses with an elite tester were used to compare the means, correlations, genetic variances, and predicted gains from selection of NZS1 and AS3 for grain yield, grain moisture at harvest, root and stalk lodging in a cool, temperate environment in New Zealand. The S1 and S2 lines from NZS1 had lower mean grain yields, higher levels of root lodging and higher mean grain moistures than the S1 and S2 lines from AS3. Mean grain yields of testcrosses of NZS1 and AS3 were similar, but NZS1 testcrosses had higher levels of root lodging. Genotypic variances estimated from S1 and S2 lines were larger for grain yield and root lodging for NZS1, smaller for grain moisture, and similar for stalk lodging. Predicted gains from selection for grain yield using intrapopulation methods based on the additive-genetic variance were larger for NZS1, but predicted gains for testcross selection were similar for the two populations. Lines with high combining ability for grain yield and acceptable grain moisture in combination with the tester occurred in NZS1. Because of the higher additive-genetic variance and the occurrence of lines with high combining ability for grain yield, we concluded that populations including highland Mexican germ plasm should be valuable for recurrent selection programs in New Zealand and in other cool, temperate regions.  相似文献   

4.
Summary In hybrid breeding programs, testcross evaluation of lines can be done during the early stages of selfing (early testing) or delayed until the lines are near-homozygous. To evaluate the usefulness of early testing, the expected genetic and phenotypic correlations between testcross performance at different selfing generations were examined. The genetic correlation (r GnGn ) between testcross performance of S n and S n , (n>n) individuals or lines is equal to the square root of the ratio of their testcross genetic variances, and it is a function of the inbreeding coefficients (F) at the two selfing generations, i.e., r GnGn=[(1+F n )/(1+F n )]0.5. The genetic correlation between testcross performance of lines and their directly descended homozygous (n=) lines is 0.71 for S1; 0.87 for S2, 0.93 for S3, 0.97 for S4, 0.98 for S5, and 0.99 for S5 lines. The effectiveness of early testing is limited mainly by nongenetic effects. The square root of testcross heritability at generation n sets the upper limit on the correlation between phenotypic value at generation n and genotypic value at homozygosity. The probabilities of correctly retaining S n individuals or lines that have superior testcross performance at homozygosity (n=) indicate that early testing should be effective in identifying lines with above- and below-average combining ability. However, the risk of losing lines with superior combining ability is high if strong (best 10%) selection pressure is applied during early testing. If only a small proportion of lines is retained based on testcross performance and/or if the heritability of the trait is low, selfing for two or three generations prior to testcrossing may be desirable to increase the likelihood of retaining lines that perform well at homozygosity. The theoretical results in this study support the testcross evaluation procedures for grain yield used by most maize (Zea mays L.) breeders.A contribution from Limagrain Genetics, a Groupe Limagrain company  相似文献   

5.
Breeding for resistance to gray leaf spot, caused by Cercospora zeae-maydis (Cz) is paramount for many maize environments, in particular under warm and humid growing conditions. In this study, we mapped and characterized quantitative trait loci (QTL) involved in the resistance of maize against Cz. We confirmed the impact of the QTL on disease severity using near-isogenic lines (NILs), and estimated their effects on three major agronomic traits using their respective near isogenic hybrids (NIHs), which we obtained by crossing the NILs with an inbred from a complementary heterotic pool. We further validated three of the four QTL that were mapped using the Multiple Interval Mapping approach and showed LOD values >2.5. NILs genotype included all combinations between favorable alleles of the two QTL located in chromosome 1 (Q 1 in bin 1.05 and Q 2 in bin 1.07), and the allele in chromosome 3 (Q 3 in bin 3.07). Each of the three QTL separately significantly reduced the severity of Cz. However, we found an unfavorable epistatic interaction between Q 1 and Q 2: presence of the favorable allele at one of the QTL allele effectively nullified the effect of the favorable allele at the other. In contrast, the interaction between Q 2 and Q 3 was additive, promoting the reduction of the severity to a greater extent than the sum of their individual effects. When evaluating the NIH we found significant individual effects for Q 1 and Q 3 on gray leaf spot severity, for Q 2 on stalk lodging and grain yield, and for Q 3 on grain moisture and stalk lodging. We detected significant epitasis between Q 1 and Q 2 for grain moisture and between Q 1 and Q 3 for stalk lodging. These results suggest that the combination of QTL impacts the effectiveness of marker-assisted selection procedures in commercial product development programs.  相似文献   

6.
Analysis of soil moisture variations in an irrigated orchard root zone   总被引:1,自引:1,他引:0  
Polak  Amir  Wallach  Rony 《Plant and Soil》2001,233(2):145-159
Soil moisture and suction head in an irrigated orchard were continuously monitored by time domain reflectometry (TDR) probes and gypsum blocks, respectively, during and between successive irrigation events. On each side of the trees in the plot, two 30-cm long probes were installed vertically 10 cm below the soil surface (denoted as shallow) and another two probes were installed vertically 40 cm below the soil surface (denoted as deep). The variation in moisture content measured by the TDR probes between successive irrigation events was qualitatively divided into four stages: the first was during water application; the second initiated when irrigation stopped and the moisture content in the layer sharply decreased, mainly due to free drainage. The succeeding moderate soil-moisture decrease, caused by the simultaneous diminishing free drainage and root uptake, was the third stage. During the fourth stage, moisture depletion from the layer was solely by root uptake. The slopes of moisture content variation with time throughout this stage enabled the monitoring of water availability to the plant. The range of moisture content variations and moisture depletion rates between subsequent irrigation events was higher in the shallow (10–40 cm) than in the deeper (40–70 cm) layer. Irrigation nonuniformity and spatial variability of soil hydraulic properties contributed to the unevenness of the moisture distribution in the soil profile. However, as soon as moisture content within a layer reached field capacity, namely the free drainage had stopped, irrigation uniformity had a negligible effect on water flux to the plant roots. The measured data indicate that soil moisture is fully available to the plant as long as the momentary moisture flux from the soil bulk to the soil–root interface can replenish the moisture being depleted to supply, under non-stressed conditions, the atmospheric water demand. This flux is dominated by the local momentary value of the soil's bulk hydraulic conductivity, K r, and it stays constant for a certain range of K r values, controlled by the increasing root suction. A decrease in water availability to the plant appears for longer irrigation intervals as a break in the constant soil-moisture depletion rate during stage 4. This break is better correlated to a threshold K r value than to threshold values of moisture content or suction. Therefore, it is suggested that moisture content or suction used to measure water availability or to control irrigation first be alibrated by K r() or K r() curves, respectively.  相似文献   

7.
With best linear unbiased prediction (BLUP), information from genetically related candidates is combined to obtain more precise estimates of genotypic values of test candidates and thereby increase progress from selection. We developed and applied theory and Monte Carlo simulations implementing BLUP in 2 two-stage maize breeding schemes and various selection strategies. Our objectives were to (1) derive analytical solutions of the mixed model equations under two breeding schemes, (2) determine the optimum allocation of test resources with BLUP under different assumptions regarding the variance component ratios for grain yield in maize, (3) compare the progress from selection using BLUP and conventional phenotypic selection based on mean performance solely of the candidates, and (4) analyze the potential of BLUP for further improving the progress from selection. The breeding schemes involved selection for testcross performance either of DH lines at both stages (DHTC) or of S1 families at the first stage and DH lines at the second stage (S1TC-DHTC). Our analytical solutions allowed much faster calculations of the optimum allocations and superseded matrix inversions to solve the mixed model equations. Compared to conventional phenotypic selection, the progress from selection was slightly higher with BLUP for both optimization criteria, namely the selection gain and the probability to select the best genotypes. The optimum allocation of test resources in S1TC-DHTC involved ≥10 test locations at both stages, a low number of crosses (≤6) each with 100–300 S1 families at the first stage, and 500–1,000 DH lines at the second stage. In breeding scheme DHTC, the optimum number of test candidates at the first stage was 5–10 times larger, whereas the number of test locations at the first stage and the number of test candidates at the second stage were strongly reduced compared to S1TC-DHTC.  相似文献   

8.
Miniature heat balance-sap flow gauges were used to measure water flows in small-diameter roots (3–4 mm) in the undisturbed soil of a mature beech–oak–spruce mixed stand. By relating sap flow to the surface area of all branch fine roots distal to the gauge, we were able to calculate real time water uptake rates per root surface area (Js) for individual fine root systems of 0.5–1.0 m in length. Study aims were (i) to quantify root water uptake of mature trees under field conditions with respect to average rates, and diurnal and seasonal changes of Js, and (ii) to investigate the relationship between uptake and soil moisture θ, atmospheric saturation deficit D, and radiation I. On most days, water uptake followed the diurnal course of D with a mid-day peak and low night flow. Neighbouring roots of the same species differed up to 10-fold in their daily totals of Js (<100–2000 g m−2 d−1) indicating a large spatial heterogeneity in uptake. Beech, oak and spruce roots revealed different seasonal patterns of water uptake although they were extracting water from the same soil volume. Multiple regression analyses on the influence of D, I and θ on root water uptake showed that D was the single most influential environmental factor in beech and oak (variable selection in 77% and 79% of the investigated roots), whereas D was less important in spruce roots (50% variable selection). A comparison of root water uptake with synchronous leaf transpiration (porometer data) indicated that average water fluxes per surface area in the beech and oak trees were about 2.5 and 5.5 times smaller on the uptake side (roots) than on the loss side (leaves) given that all branch roots <2 mm were equally participating in uptake. Beech fine roots showed maximal uptake rates on mid-summer days in the range of 48–205 g m−2 h−1 (i.e. 0.7–3.2 mmol m−2 s−1), oak of 12–160 g m−2 h−1 (0.2–2.5 mmol m−2 s−1). Maximal transpiration rates ranged from 3 to 5 and from 5 to 6 mmol m−2 s−1 for sun canopy leaves of beech and oak, respectively. We conclude that instantaneous rates of root water uptake in beech, oak and spruce trees are above all controlled by atmospheric factors. The effects of different root conductivities, soil moisture, and soil hydraulic properties become increasingly important if time spans longer than a week are considered.  相似文献   

9.
Nitrogen fixation in excised root nodules of 2-year-old, postfireCeanothus tomentosus andC. leucodermis seedlings was measured over an 8-month period using the acetylene reduction method. High levels of NO3–N and NH4–N present in postfire soils were limited to the upper 10 cm and did not inhibit nodulation in these deeper-rooting seedlings. Decreases in acetylene reduction activity occurred with decreased soil moisture and increased soil temperature. Nitrogen gains from these two Ceanothus shrub seedlings totalled 1.6 kg N ha–1 yr–1.  相似文献   

10.
Summary Isozymes and restriction fragment length polymorphisms (RFLPs) have been proposed for use in varietal identification and selection for agronomic traits. Although the use of isozymes for these purposes has been well documented, evaluation of the efficacy of RFLP technology as applied to crop improvement is far from complete. This investigation was conducted to study the relationship between RFLP-derived genotypes and heterotic patterns of a group of maize (Zea mays L.) inbred lines. A total of 22 inbreds was crossed to four testers (B73, B76, Mo17, and Va26) in combinations that minimized crossing within heterotic groups. Forty-seven single-cross progeny were subsequently evaluated for several agronomic traits (including grain yield and moisture, ear height, and root lodging) over 2–4 consecutive years at two to four Iowa locations in a randomized complete-block design. The inbred lines were subjected to RFLP analysis, which involved 47 genomic clones and the restriction enzymes EcoRI and HindIII. Hybrid RFLP patterns were predicted from their inbred parents. Modified Roger's distances were computed to estimate genetic distance among the inbred lines. Principal component analysis facilitated ascertainment of relative dispersion of the inbreds based on the frequency of variants at specific RFLP loci. Evident associations of variants with genes affecting agronomic traits were identified by principal component regression analysis, in which adjusted hybrid means were regressed on the matrix of hybrid variants frequencies. The hybrid means were adjusted by removing environmental effects, using residuals as dependent variables in the regression analysis. Results from this study suggest that RFLP analysis may be of value in allocating maize inbreds to heterotic groups, but no relationship between RFLP-based genetic distance and hybrid performance was apparent. Principal component regression identified variants potentially linked to genes that control specific agronomic traits.Joint contribution: USDA-ARS and Journal Paper No. J-13590 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011, USA. Projects No. 2818 and 2778  相似文献   

11.
A previous study conducted on a maize (Zea mays L.) mapping population derived from Os420 × IABO78 identified a quantitative trait locus (QTL) for leaf-abscisic acid concentration (L-ABA) on chromosome 2 (bin 2.04). In order to validate this QTL, we analyzed with RFLP markers 16 F4 lines obtained by divergent selection for L-ABA from the same source. Three RFLPs mapping near bin 2.04 showed skewed allelic frequencies; the L-ABA increasing allele (+) was more frequent within the eight lines selected for high L-ABA, while the decreasing allele (–) was more frequent within the eight lines selected for low L-ABA. To characterize more accurately the direct and associated effects of this QTL, near-isogenic lines were developed by molecular marker-assisted back-crossing; four backcross-derived lines were homozygous (+/+) at the QTL and four were (–/–). A pair of near-isogenic hybrids (+/+) and (–/–) at the QTL were also produced. These materials were field tested under water-stressed and well-watered conditions. Across water regimes, the four (+/+) lines averaged a significantly higher mean value than the four (–/–) lines for L-ABA (494 vs. 396 ng ABA g–1 DW) and a significantly lower mean value for relative water content (90.6 vs. 92.0%). The (+/+) hybrid exceeded the (–/–) for L-ABA (476 vs. 325 ng g–1 DW) and was less affected by root lodging (44.6 vs. 66.1%). Our results validate the presence of a major QTL for L-ABA on bin 2.04 and indicate that the QTL also affects root traits and relative water content.  相似文献   

12.
Recurrent selection is a cyclic breeding procedure designed to improve the mean of a population for the trait(s) under selection. Starting from an F2 population of European flint maize (Zea mays L.) intermated for three generations, we conducted seven cycles of a modified recurrent full-sib (FS) selection scheme. The objectives of our study were to (1) monitor trends across selection cycles in the estimates of the population mean, additive and dominance variances, (2) compare predicted and realized selection responses, and (3) investigate the usefulness of best linear unbiased prediction (BLUP) of progeny performance under the recurrent FS selection scheme applied. Recurrent FS selection was conducted at three locations using a selection rate of 25% for a selection index, based on grain yield and grain moisture. Recombination was performed according to a pseudo-factorial mating scheme, where the selected FS families were divided into an upper-ranking group of parents mated to the lower-ranking group. Variance components were estimated with restricted maximum likelihood. Average grain yield increased 9.1% per cycle, average grain moisture decreased 1.1% per cycle, and the selection index increased 11.2% per cycle. For the three traits we observed, no significant changes in additive and dominance variances occurred, suggesting future selection response at or near current rates of progress. Predictions of FS family performance in Cn+1 based on mean performance of parental FS families in Cn were of equal or higher precision as those based on the mean additive genetic BLUP of their parents, and corresponding correlations were of moderate size only for grain moisture. The significant increase in grain yield combined with the decrease in grain moisture suggest that the F2 source population with use of a pseudo-factorial mating scheme is an appealing alternative to other types of source materials and random mating schemes commonly used in recurrent selection.  相似文献   

13.
Grasslands cover about 40% of the ice-free global terrestrial surface, but their contribution to local and regional water and carbon fluxes and sensitivity to climatic perturbations such as drought remains uncertain. Here, we assess the direction and magnitude of net ecosystem carbon exchange (NEE) and its components, ecosystem carbon assimilation (A c) and ecosystem respiration (R E), in a southeastern United States grassland ecosystem subject to periodic drought and harvest using a combination of eddy-covariance measurements and model calculations. We modeled A c and evapotranspiration (ET) using a big-leaf canopy scheme in conjunction with ecophysiological and radiative transfer principles, and applied the model to assess the sensitivity of NEE and ET to soil moisture dynamics and rapid excursions in leaf area index (LAI) following grass harvesting. Model results closely match eddy-covariance flux estimations on daily, and longer, time steps. Both model calculations and eddy-covariance estimates suggest that the grassland became a net source of carbon to the atmosphere immediately following the harvest, but a rapid recovery in LAI maintained a marginal carbon sink during summer. However, when integrated over the year, this grassland ecosystem was a net C source (97 g C m–2 a–1) due to a minor imbalance between large A c (–1,202 g C m–2 a–1) and R E (1,299 g C m–2 a–1) fluxes. Mild drought conditions during the measurement period resulted in many instances of low soil moisture (<0.2 m3m–3), which influenced A c and thereby NEE by decreasing stomatal conductance. For this experiment, low had minor impact on R E. Thus, stomatal limitations to A c were the primary reason that this grassland was a net C source. In the absence of soil moisture limitations, model calculations suggest a net C sink of –65 g C m–2 a–1 assuming the LAI dynamics and physiological properties are unaltered. These results, and the results of other studies, suggest that perturbations to the hydrologic cycle are key determinants of C cycling in grassland ecosystems.  相似文献   

14.
Landscape patterns of CH4 fluxes in an alpine tundra ecosystem   总被引:2,自引:0,他引:2  
We measured CH4 fluxes from three major plant communities characteristic of alpine tundra in the Colorado Front Range. Plant communities in this ecosystem are determined by soil moisture regimes induced by winter snowpack distribution. Spatial patterns of CH4 flux during the snow-free season corresponded roughly with these plant communities. InCarex-dominated meadows, which receive the most moisture from snowmelt, net CH4 production occurred. However, CH4 production in oneCarex site (seasonal mean=+8.45 mg CH4 m–2 d–1) was significantly larger than in the otherCarex sites (seasonal means=–0.06 and +0.05 mg CH4 m–2 d–1). This high CH4 flux may have resulted from shallower snowpack during the winter. InAcomastylis meadows, which have an intermediate moisture regime, CH4 oxidation dominated (seasonal mean=–0.43 mg CH4 m–2 d–1). In the windsweptKobresia meadow plant community, which receive the least amount of moisture from snowmelt, only CH4 oxidation was observed (seasonal mean=–0.77 mg CH4 m–2 d–1). Methane fluxes correlated with a different set of environmental factors within each plant community. In theCarex plant community, CH4 emission was limited by soil temperature. In theAcomastylis meadows, CH4 oxidation rates correlated positively with soil temperature and negatively with soil moisture. In theKobresia community, CH4 oxidation was stimulated by precipitation. Thus, both snow-free season CH4 fluxes and the controls on those CH4 fluxes were related to the plant communities determined by winter snowpack.  相似文献   

15.
Leaching of NO 3 from vegetable cropping systems can be very high compared to arable systems. This is a problem for vegetable growers in general as it decreases groundwater quality, and for organic growers in particular as the organic production is often limited by N. In a field experiment, we investigated the N uptake and root growth of three vegetables using minirhizotrons reaching 2.4 m with the purpose to study the relationship between vegetable root distribution and uptake of NO 3 from deep soil layers. NO 3 uptake was studied over a 6 d period at the end of September by injection of 15 NO 3 at four depths in the ranges: 0.2–0.8, 0.6–1.8, and 1–2.5 m under late sweet corn (Zea mays L. convar. Saccharata Koern.), carrot (Daucus carota L.), and autumn white cabbage (Brassica oleracea L. convar. capitata (L.) Alef. var. alba DC), respectively. The root depths of the three crops were 0.6, 1.3, and more than 2.4 m, respectively. Uptake of15N was close to zero from placements below root depth, and linear relationships were found between root density and15N uptake from different depths. N inflow rates (uptake per unit root length) were in the same range for all species and depths. This indicates that the very different N use efficiencies often found for vegetable crops depend on species specific differences in root development over time and space, more than on differences in N uptake ability of the single root. Thus deep rooting is important for deep N uptake. Knowledge about deep root growth enables design of crop rotations with improved N use efficiency based on re-cycling of deep soil NO 3 by vegetables.  相似文献   

16.
Association mapping (AM) is a powerful approach to dissect the genetic architecture of quantitative traits. The main goal of our study was to empirically compare several statistical methods of AM using data of an elite maize breeding program with respect to QTL detection power and possibility to correct for population stratification. These models were based on the inclusion of cofactors (Model A), cofactors and population effect (Model B), and SNP effects nested within populations (Model C). A total of 930 testcross progenies of an elite maize breeding population were field-evaluated for grain yield and grain moisture in multi-location trials and fingerprinted with 425 SNP markers. For grain yield, population stratification was effectively controlled by Model A. For grain moisture with a high ratio of variance among versus within populations, Model B should be applied in order to avoid potential false positives. Model C revealed large differences among allele substitution effects for trait-associated SNPs across multiple plant breeding populations. This heterogeneous SNP allele substitution effects have a severe impact for genomic selection studies, where SNP effects are often assumed to be independent of the genetic background.  相似文献   

17.
倒伏是影响作物品种选育和产业化推广的重要限制因子,会使作物籽粒与秸秆的产量和品质显著降低且易引发病虫害,不利于机械化收割使作物经济效益显著降低.株高、茎秆强度、壁厚、分蘖数、分蘖夹角等性状同作物茎秆抗倒伏特性密切相关.倒伏主要分为为根倒伏和茎倒伏,茎倒伏与茎秆特性相关,其中株高与分蘖数分别受赤霉素信号转导和独脚金内酯信...  相似文献   

18.
Ma  Zhong  Walk  Thomas C.  Marcus  Andrew  Lynch  Jonathan P. 《Plant and Soil》2001,236(2):221-235
Low phosphorus availability regulates root hair growth in Arabidopsis by (1) increasing root hair length, (2) increasing root hair density, (3) decreasing the distance between the root tip and the point at which root hairs begin to emerge, and (4) increasing the number of epidermal cell files that bear hairs (trichoblasts). The coordinated regulation of these traits by phosphorus availability prompted us to speculate that they are synergistic, that is, that they have greater adaptive value in combination than they do in isolation. In this study, we explored this concept using a geometric model to evaluate the effect of varying root hair length (short, medium, and long), density (0, 24, 48, 72, 96, and 120 root hairs per mm of root length), tip to first root hair distance (0.5, 1, 2, and 4 mm), and number of trichoblast files (8 vs. 12) on phosphorus acquisition efficiency (PAE) in Arabidopsis. SimRoot, a dynamic three-dimensional geometric model of root growth and architecture, was used to simulate the growth of Arabidopsis roots with contrasting root hair parameters at three values of phosphorus diffusion coefficient (D e=1×10–7, 1×10–8, and 1×10–9 cm2 s–1) over time (20, 40, and 60 h). Depzone, a program that dynamically models nutrient diffusion to roots, was employed to estimate PAE and competition among root hairs. As D e decreased from 1×10–7 to 1×10–9 cm2 s–1, roots with longer root hairs and higher root hair densities had greater PAE than those with shorter and less dense root hairs. At D e=1×10–9 cm2 s–1, the PAE of root hairs at any given density was in the order of long hairs > medium length hairs > short hairs, and the maximum PAE occurred at density = 96 hairs mm–1 for both long and medium length hairs. This was due to greater competition among root hairs when they were short and dense. Competition over time decreased differences in PAE due to density, but the effect of length was maintained, as there was less competition among long hairs than short hairs. At high D e(1×10–7 cm2 s–1), competition among root hairs was greatest among long hairs and lowest among short hairs, and competition increased with increasing root hair densities. This led to a decrease in PAE as root hair length and density increased. PAE was also affected by the tip to first root hair distance. At low D e values, decreasing tip to first root hair distance increased PAE of long hairs more than that of short hairs, whereas at high D e values, decreasing tip to first root hair distance increased PAE of root hairs at low density but decreased PAE of long hairs at very high density. Our models confirmed the benefits of increasing root hair density by increasing the number of trichoblast files rather than decreasing the trichoblast length. The combined effects of all four root hair traits on phosphorus acquisition was 371% greater than their additive effects, demonstrating substantial morphological synergy. In conclusion, our data support the hypothesis that the responses of root hairs to low phosphorus availability are synergistic, which may account for their coordinated regulation.  相似文献   

19.
In a seasonally dry tropical region the water use efficiency (WUE) of three grasses (C3 winter annualPolypogon monspeliensis, C4 perennialDichanthium annulatum and C4 warm seasonal annualEchinochloa colonum) was evaluated during summer and winter under nine experimental conditions (3 soil moisture×3 herbage removal). Generally leaf water status and transpiration rate decreased with soil moisture stress and increased with clipping intensity. During winter the transpiration rate of Dichanthium was much lower than that of Polypogon and its own rate in summer. Both soil moisture stress and clipping intensity increased the WUE in all instances. Despite differences in photosynthetic type, growing season and life form, these grasses exhibited broadly similar positive relationships, across nine treatments for WUE: soil moisture stress, and water consumption: production. The range of WUE (g. mm–1) calculated on TNP through the nine treatments was: summer—Dichanthium 2.9–10.0, Echinochloa 2.0–6.7; winter—Dichanthium 4.3–36.3, Polypogon 1.9–12.0.  相似文献   

20.
Summary Hydrogen evolution from root nodules has been reported to decrease the efficiency of the nitrogen fixing system. Mutants ofRhizobium meliloti andRhizobium leguminosarum were selected which were deficient in H2-uptake capacity (Hup). The relative efficiency of the nitrogen fixation for both species assessed with C2H2 reduction was 0.66.The hydrogen production was monitored using a simple root incubation method. As such, hydrogen production up to 3.83 and 15.57 ml.day–1.g–1 plant dry weight were recorded forPisum sativum — Rhizobium leguminosarum 4.20 Hup andMedicago sativa — Rhizobium meliloti 1.5 Hup respectively. In a closed container (250 ml), hydrogen concentrations up to 20% (v/v) could be reached in the root phase ofMedicago sativa in a time period of 320 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号