首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution structural data of membrane proteins can be obtained by studying 2D crystals by electron crystallography. Finding the right conditions to produce these crystals is one of the major bottlenecks encountered in 2D crystallography. Many reviews address 2D crystallization techniques in attempts to provide guidelines for crystallographers. Several techniques including new approaches to remove detergent like the biobeads technique and the development of dedicated devices have been described (dialysis and dilution machines). In addition, 2D crystallization at interfaces has been studied, the most prominent method being the 2D crystallization at the lipid monolayer. A new approach based on detergent complexation by cyclodextrins is presented in this paper. To prove the ability of cyclodextrins to remove detergent from ternary mixtures (lipid, detergent and protein) in order to get 2D crystals, this method has been tested with OmpF, a typical beta-barrel protein, and with SoPIP2;1, a typical alpha-helical protein. Experiments over different time ranges were performed to analyze the kinetic effects of detergent removal with cyclodextrins on the formation of 2D crystals. The quality of the produced crystals was assessed with negative stain electron microscopy, cryo-electron microscopy and diffraction. Both proteins yielded crystals comparable in quality to previous crystallization reports.  相似文献   

2.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.  相似文献   

3.
Membrane proteins, lipids and detergents: not just a soap opera   总被引:1,自引:0,他引:1  
Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.  相似文献   

4.
The proteins and lipids of the scallop gill ciliary membrane may be reassociated through several cycles of detergent solubilization, detergent removal, and freeze-thaw, without significant change in overall protein composition. Membrane proteins and lipids reassociate to form vesicles of uniform, discrete density classes under a variety of reassociation conditions involving detergent removal and concentration. Freed of the solubilizing detergent during equilibrium centrifugation, a protein-lipid complex equilibrates to a position on a sucrose density gradient characteristic of the original membrane density. When axonemal tubulin is solubilized by dialysis, mixed with 2:1 lecithin/cholesterol dissolved in Nonidet P-40, freed of detergent, and reconstituted by freeze-thaw, vesicles of a density essentially equal to pure lipid result. If the lipid fraction is derived through chloroform-methanol extraction of natural ciliary membranes, a moderate increase in density occurs upon reconstitution, but the protein is adsorbed and most is removed by a simple low ionic strength wash, in contrast to vesicles reconstituted from membrane proteins where even high salt extraction causes no loss of protein. The proteins of the ciliary membrane dissolve with constant composition, regardless of the type, concentration, or efficiency of detergent. Analytical ultracentrifugation demonstrates that monodisperse mixed micelles form at high detergent concentrations, but that membranes are dispersed to large sedimentable aggregates by Nonidet P-40 even at several times the critical micelle concentration, which suggests reasons for the efficacy of certain detergent for the production of ATP-reactivatable cell models. In extracts freed of detergent, structured polydisperse particles, but not membrane vesicles, are seen in negative staining; vesicles form upon concentration of the extract. Membrane tubulin is not in a form that will freely undergo electrophoresis, even in the presence of detergent above the critical micelle concentration. All chromatographic attempts to separate membrane tubulin from other membrane proteins have failed; lipid and protein are excluded together by gel filtration in the presence of high concentrations of detergent. These observations support the idea that a relatively stable lipid-protein complex exists in the ciliary membrane and that in this complex membrane tubulin is tightly associated with lipids and with a number of other proteins.  相似文献   

5.
Detergent removal from lipid-protein-detergent micellar solutions is the most successful strategy for reconstitution of integral membrane proteins into proteoliposomes or into two-dimensional crystals. This review establishes the potential of polystyrene beads as a simple alternative to other conventional detergent removing strategies such as dialysis, gel chromatography and dilution. Kinetics and equilibrium aspects of removal of different detergents by hydrophobic adsorption onto polystyrene beads have been systematically investigated. A mechanism of adsorption onto polystyrene beads is proposed and provide useful information about the use of these beads in reconstitution experiments. The usefulness of this detergent removal strategy to produce quasi-ideal proteoliposomes is evaluated by considering the morphology and the size of the reconstituted vesicles, the homogeneity in size and protein distribution, the final protein orientation and the permeability of resulting proteoliposomes. Finally, the advantages of detergent removal by polystyrene beads as an alternative to conventional dialysis in two-dimensional crystallization trials are evaluated through review of recent structural reconstitution studies. Received: 1 December 1997 / Revised version: 6 February 1998 / Accepted: 6 February 1998  相似文献   

6.
Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein–lipid–detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility.  相似文献   

7.
A method for membrane reconstitution from cholate-solubilized microsomal proteins and lipids by a removal of the detergent on a column with charcoal has been developed. A comparative study showed that the membranes reconstituted by a dialysis or absorption do not differ from each other in terms of membrane proteins incorporation into lipid vesicles and cytochrome P-450 reconversion into cytochrome P-450. A possibility of biomembrane reconstitution from membrane proteins and lipids solubilized by a non-ionic detergent Triton X-100 was shown. A removal of the detergent results in a formation of membranes, which are chemically close to the original ones but ultrastructurally very different from the latter. On the other hand, absorption or dialysis of cholate-solubilized proteins and lipids results in reconstituted membranes with asymmetrically arranged intramembrane particles located on the hydrophobic surfaces of the membrane halves. The number and size of these particles are similar to those of the original microsomal membranes.  相似文献   

8.
Reconstitution of membrane proteins allows their study in a membrane environment that can be manipulated at will. Because membrane proteins have diverse biophysical properties, reconstitution methods have so far been developed for individual proteins on an ad hoc basis. We developed a postinsertion reconstitution method for CCR5, a G protein coupled receptor, with seven transmembrane alpha helices and small ecto- and endodomains. A His6-tagged version of CCR5 was expressed in mammalian cells, purified using the detergent N-dodecyl-beta-d-maltoside (DDM) and reconstituted into preformed liposomal membranes saturated with DDM, removing the detergent with hydrophobic polystyrene beads. We then attempted to incorporate CD4, a protein with a single transmembrane helix and a large hydrophilic ectodomain into liposomal membranes, together with CCR5. Surprisingly, reconstitution of this protein was also achieved by the method. Both proteins were found to be present together in individual liposomes. The reconstituted CCR5 was recognized by several monoclonal antibodies, recognized its natural ligand, and CD4 bound a soluble form of gp120, a subunit of the HIV fusion protein that uses CD4 as a receptor. Moreover, cells expressing the entire fusion protein of HIV bound to the liposomes, indicating that the proteins were intact and that most of them were oriented right side out. Thus, functional coreconstitution of two widely different proteins can be achieved by this method, suggesting that it might be useful for other proteins.  相似文献   

9.
Membrane proteins are involved in various critical biological processes,and studying membrane proteins represents a major challenge in protein biochemistry.As shown by both structural and functional studies,the membrane environment plays an essential role for membrane proteins.In vitro studies are reliant on the successful reconstitution of membrane proteins.This review describes the interaction between detergents and lipids that aids the understanding of the reconstitution processes.Then the techniques of detergent removal and a few useful techniques to refine the formed proteoliposomes are reviewed.Finally the applications of reconstitution techniques to study membrane proteins involved in Ca2+ signaling are summarized.  相似文献   

10.
Meningococcal and gonococcal outer membrane proteins were reconstituted into liposomes using detergent-mediated dialysis. The detergents octyl glucopyranoside (OGP), sodium cholate and Empigen BB were compared with respect to efficiency of detergent removal and protein incorporation. The rate of OGP removal was greater than for cholate during dialysis. Isopycnic density gradient centrifugation studies showed that liposomes were not formed and hence no protein incorporation occurred during dialysis from an Empigen BB containing reconstitution mixture. Cholate-mediated reconstitution yielded proteoliposomes with only 75% of the protein associated with the vesicles whereas all of the protein was reconstituted into the lipid bilayer during OGP-mediated reconstitution. Essentially complete protein incorporation was achieved with an initial protein-to-lipid ratio of 0.01:1 (w/w) in the reconstitution mixture; however, at higher initial protein-to-lipid ratios (0.02:1) only 75% protein incorporation was achieved. Reconstituted proteoliposomes were observed as large (>300 nm), multilamellar structures using cryo-electron microscopy. Size reduction of these proteoliposomes by extrusion did not result in significant loss of protein or lipid. Extruded proteoliposomes were unilamellar vesicles with mean diameter of about 100 nm.  相似文献   

11.
Linke D  Frank J  Holzwarth JF  Soll J  Boettcher C  Fromme P 《Biochemistry》2000,39(36):11050-11056
More than 30% of all proteins in the living cell are membrane proteins; most of them occur in the native membranes only in very low amounts, which hinders their functional and structural investigation. Here we describe the in vitro reconstitution of overexpressed Outer Envelope Protein 16 (OEP16) from pea chloroplasts, a cation-selective channel, which has been purified from E. coli inclusion bodies. Reconstitution in detergent micelles was monitored by CD and fluorescence spectroscopy. Electron microscopy showed a homogeneous size distribution of the reconstituted protein, and differential scanning calorimetry gave an estimate of the enthalpy of protein folding. First protein crystals were obtained that have to be further refined for X-ray structural analysis. The described methods of membrane protein reconstitution and biophysical analysis might prove helpful in the study of other membrane proteins.  相似文献   

12.
The physico-chemical properties of short-chain phosphatidylcholine are reviewed to the extent that its biological activity as a mild detergent can be rationalized. Long-chain diacylphosphatidylcholines are typical membrane phospholipids that form preferentially smectic lamellar phases (bilayers) when dispersed in water. In contrast, the preferred phase of the short-chain analogues dispersed in excess water is the micellar phase. The preferred conformation and the dynamics of short-chain phosphatidylcholines in the monomeric and micellar state present in H(2)O are discussed. The motionally averaged conformation of short-chain phosphatidylcholines is then compared to the single-crystal structures of membrane lipids. The main conclusion emerging is that in terms of preferred conformation and motional averaging short-chain phosphatidylcholines closely resemble their long-chain analogues. The dispersing power of short-chain phospholipids is emphasized in the second part of the review. Evidence is presented to show that this class of compounds is superior to most other detergents used in the solubilization of membrane proteins and the reconstitution of the solubilized proteins to artificial membrane systems (proteoliposomes). The prominent feature of the solubilization/reconstitution of integral membrane proteins by short-chain PC is the retention of the native protein structure and hence the protein function. Due to their special detergent-like properties, short-chain PC lend themselves very well not only to membrane solubilization but also to the purification of integral membrane proteins. The retention of the native protein structure in the solubilized state, i.e. in mixed micelles consisting of the integral membrane protein, intrinsic membrane lipids and short-chain PC, is rationalized. It is hypothesized that short-chain PC interacts primarily with the lipid bilayer of a membrane and very little if at all with the membrane proteins. In this way, the membrane protein remains associated with its preferred intrinsic membrane lipids and retains its native structure and its function.  相似文献   

13.
Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native‐like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent‐solubilized protein‐lipid mixture. Recently, an alternative method has been developed using direct cell‐free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell‐free expression method are structurally indistinguishable from those produced using detergent removal methodologies. This further supports the utility of single step cell‐free methods for the production of lipid binding proteins. In addition, detailed structural information describing these NLPs can be obtained by fitting a capped core‐shell cylinder type model to all SANS/SAXS data simultaneously.  相似文献   

14.
Functional reconstitution of prokaryote and eukaryote membrane proteins   总被引:7,自引:0,他引:7  
A new strategy for the functional reconstitution of membrane proteins is described. This approach introduces a new class of protein stabilizing agents--osmolytes--whose presence at high concentration (10-20%) during detergent solubilization prevents the inactivations that normally occur when proteins are extracted from natural membranes. Osmolytes that act in this way include compounds such as glycerol and higher polyols (erythritol, xylitol, sorbitol), sugars (glucose, trehalose), and certain amino acids (glycine, proline, betaine). The beneficial effects of osmolytes are documented by reconstitution of a variety of prokaryote and eukaryote membrane proteins, including several proton- and calcium-motive ATPases, cation- and anion-linked solute carriers (symport and antiport), and a membrane-bound hydrolase from endoplasmic reticulum. In all cases, the presence of 20% glycerol or other osmolyte during detergent solubilization led to 10-fold or more increased specific activity in proteoliposomes. These positive effects did not depend on use of any specific detergent for protein solubilization, nor on any particular method of reconstitution, but for convenience most of the work reported here has used octylglucoside as the solubilizing agent, followed by detergent-dilution to form proteoliposomes. The overall approach outlined by these experiments is simple and flexible. It is now feasible to use reconstitution as an analytical tool to study the biochemical and physiological properties of membrane proteins.  相似文献   

15.
Crystallizing membrane proteins remains a challenging endeavor despite the increasing number of membrane protein structures solved by X-ray crystallography. The critical factors in determining the success of the crystallization experiments are the purification and preparation of membrane protein samples. Moreover, there is the added complication that the crystallization conditions must be optimized for use in the presence of detergents although the methods used to crystallize most membrane proteins are, in essence, straightforward applications of standard methodologies for soluble protein crystallization. The roles that detergents play in the stability and aggregation of membrane proteins as well as the colloidal properties of the protein-detergent complexes need to be appreciated and controlledbefore and during the crystallization trials. All X-ray quality crystals of membrane proteins were grown from preparations of detergent-solubilized protein, where the heterogeneous natural lipids from the membrane have been replaced by ahomogeneous detergent environment. It is the preparation of such monodisperse, isotropic solutions of membrane proteins that has allowed the successful application of the standard crystallization methods routinely used on soluble proteins. In this review, the issues of protein purification and sample preparation are addressed as well as the new refinements in crystallization methodologies for membrane proteins. How the physical behavior of the detergent, in the form of micelles or protein-detergent aggregates, affects crystallization and the adaptation of published protocols to new membrane protein systems are also addressed. The general conclusion is that many integral membrane proteins could be crystallized if pure and monodisperse preparations in a suitable detergent system can be prepared.In memory of Glenn D. Garavito.  相似文献   

16.
Detergents are indispensable in the isolation of integral membrane proteins from biological membranes to study their intrinsic structural and functional properties. Solubilization involves a number of intermediary states that can be studied by a variety of physicochemical and kinetic methods; it usually starts by destabilization of the lipid component of the membranes, a process that is accompanied by a transition of detergent binding by the membrane from a noncooperative to a cooperative interaction already below the critical micellar concentration (CMC). This leads to the formation of membrane fragments of proteins and lipids with detergent-shielded edges. In the final stage of solubilization membrane proteins are present as protomers, with the membrane inserted sectors covered by detergent. We consider in detail the nature of this interaction and conclude that in general binding as a monolayer ring, rather than as a micelle, is the most probable mechanism. This mode of interaction is supported by neutron diffraction investigations on the disposition of detergent in 3-D crystals of membrane proteins. Finally, we briefly discuss the use of techniques such as analytical ultracentrifugation, size exclusion chromatography, and mass spectrometry relevant for the structural investigation of detergent solubilized membrane proteins.  相似文献   

17.
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.  相似文献   

18.
Synaptic membranes from rat spinal cord were solubilized in the presence of 2% sodium cholate, phospholipids and 15% ammonium sulphate. The soluble extract was incorporated into liposomes consisting of asolectin and crude rat brain lipids. Reconstitution of the functional transporter protein was achieved by removal of detergent by gel filtration. Several parameters proved to be important for optimal reconstitution efficiency: (a) the lipid composition of the liposomes, (b) the type of detergent, and (c) the phospholipid/protein and detergent/protein ratio during reconstitution. In the reconstituted system, the transport of glycine showed a specific activity about twice that of native vesicles. The ionic dependence of the transport, the inhibitory effect of nigericin in the presence of external sodium and the stimulatory effect of valinomycin in the presence of internal potassium on glycine transport were preserved and more clearly observed in the reconstituted system. These results indicate that, in this preparation, the glycine transporter protein retains the same features displayed in the synaptic plasma membrane vesicles, namely dependence on sodium and chloride, electrogenicity and inhibitor sensitivity.  相似文献   

19.
In bacteria, phospholipids are synthesized on the inner leaflet of the cytoplasmic membrane and must translocate to the outer leaflet to propagate a bilayer. Transbilayer movement of phospholipids has been shown to be fast and independent of metabolic energy, and it is predicted to be facilitated by membrane proteins (flippases) since transport across protein-free membranes is negligible. However, it remains unclear as to whether proteins are required at all and, if so, whether specific proteins are needed. To determine whether bacteria contain specific proteins capable of translocating phospholipids across the cytoplasmic membrane, we reconstituted a detergent extract of Bacillus subtilis into proteoliposomes and measured import of a water-soluble phospholipid analog. We found that the proteoliposomes were capable of transporting the analog and that transport was inhibited by protease treatment. Active proteoliposome populations were also able to translocate a long-chain phospholipid, as judged by a phospholipase A(2)-based assay. Protein-free liposomes were inactive. We show that manipulation of the reconstitution mixture by prior chromatographic fractionation of the detergent extract, or by varying the protein/phospholipid ratio, results in populations of vesicles with different specific activities. Glycerol gradient analysis showed that the majority of the transport activity sedimented at approximately 4S, correlating with the presence of specific proteins. Recovery of activity in other gradient fractions was low despite the presence of a complex mixture of proteins. We conclude that bacteria contain specific proteins capable of facilitating transbilayer translocation of phospholipids. The reconstitution methodology that we describe provides the basis for purifying a facilitator of transbilayer phospholipid translocation in bacteria.  相似文献   

20.
The two major membrane glycoproteins of human red cells, glycophorin and band 3, the anion exchange protein, were isolated from cells exofacially labeled with fluorescein and reconstituted into vesicles with defined transmembrane disposition. Uniform orientation of polypeptides was accomplished by two procedures: Vesicles with single protein units were obtained by a one-step dilution of a protein/detergent suspension with a vast excess of phospholipid. Vesicles with uniform orientation of protein were selected by affinity chromatography on derivatized Sepharoses (organomercurial, wheat germ agglutinin, aminoethyl or diethylaminoethyl). Vesicles with multiple protein units with uniform orientation were generated by vectorial immobilization of detergent solubilized proteins on the above affinity matrices and in situ formation of proteoliposomes by detergent substitution for phospholipid. The proteoliposomes were released from the column by addition of excess free ligand. The orientation of band 3 and glycophorin in the reconstituted vesicles was first assessed by immunofluorescence quenching, using anti-fluorescein antibodies, to quantitatively quench fluorescein residues exposed on the outer surface of vesicles. Further assessment was achieved by chromatographing the vesicles through various affinity and ionic matrices. Vesicle populations of higher than 90% homogeneity in protein orientation (right-side-out or inside-out) were obtained with both procedures. The above methods provide a convenient experimental tool for the oriented reconstitution of proteins and the evaluation of their transmembrane disposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号