首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in membrane-bound ATP systems (breakdown and resynthesis) were analyzed in different experimental ulcer models (such as ETOH, HCl, NaOH, 25% NaCl-induced, pyloric ligated + epinephrine treated, stress, reserpine treated, indomethacin treated rat models) and chronic antral, duodenal and jejunal ulcers in patients. The energy system parameters (adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic AMP (cAMP), lactate) were measured from different sites of gastrointestinal mucosa, and values of ATP/ADP, adenylate pool (ATP + ADP + AMP) and energy charge ((ATP + 0.5 ADP)/(ATP + ADP + AMP)) were calculated. The biochemical measurements were done at different times during the development of gastrointestinal mucosal lesions, without and with application of different drugs (PGI2, atropine, cimetidine) and bilateral surgical vagotomy. The aims of our present paper were: 1.) To summarize the main directions of ATP breakdown during the development of gastrointestinal lesions or ulcers in different experimental models and human beings: 2.) To summarize the biochemical steps of defense of gastrointestinal mucosa against chemicals, drugs or unknown pathogenic factors; 3.) To analyze the importance of membrane-bound ATP-dependent energy systems in order to understand the mucosal lesions and their prevention; 4.) To evaluate the real values of changes in these parameters from the point of view of ulcerogenesis and its prevention; 5.) To find some correlation between the energy parameters during mucosal damage and its prevention: 6.) To understand better the types of tissue reactions (metabolic) due to development of mucosal lesions and prevention.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Methods for measurements of catabolic reduction charge (defined as NADH/(NADH+NAD+)) and anabolic reduction charge (defined as NADPH/(NADPH + NADP+)) are described using [14C]nicotinamide labeling of Escherichia coli cultures. Together with these parameters the adenylate energy charge (ATP + 1/2ADP)/(ATP + ADP + AMP) was measured using labeling with [2-3H]adenine. These three charges were found under different exponential growth conditions to have values independent of the growth conditions: catabolic reduction charge, 0.05; anabolic reduction charge, 0.45; and adenylate energy charge, 0.9. The charges were examined during interruption of growth primarily affecting catabolism, respiration, or anabolism, leading to changes of the charges. The changes of charges are evaluated as a possible regulation of the metabolic rates utilizing or producing the nucleotides by their respective charges.  相似文献   

3.
Metabolic changes during cell growth inhibition by p27 overexpression   总被引:2,自引:0,他引:2  
The overexpression of p27, a cyclin-dependent kinase (CDK) inhibitor, has been shown to effectively inhibit cell growth at the G1-phase of different cell lines, potentiating a valid genetic strategy for cell proliferation control. In order to characterize the energy requirements after p27 overexpression in CHO cells expressing SEAP (secreted form of the human alkaline phosphatase enzyme), key metabolic parameters were evaluated. Cell growth inhibition led to a significant increase in cell size concomitant with a 2-fold increase in cell protein content. The simultaneous increase of the intracellular proteolytic activity with protein content suggests higher protein synthesis. A general 2-fold increase in oxygen, glutamine and glucose consumption rates, coupled with an increase in lactate and ammonia production was observed. p27 overexpression led to a significant increase in the intracellular pool of AMP (8.5-fold), ADP (6-fold) and, more uncommonly, ATP (4.5-fold). Nevertheless, cells were able to maintain the equilibrium among the three adenine nucleotides since both the ATP/ADP ratio and the energy charge values remained similar to those observed with non-growth inhibited cells. This work shows that the observed 4-fold increase in SEAP specific productivity after cell growth inhibition by p27, occurred concomitantly with a higher expenditure of cell energy. This characterization of cell metabolism becomes important in demonstrating the applicability of growth inhibition systems.  相似文献   

4.
We investigated the role of energy supplied by long-chain fatty acid oxidation in rat platelet function. Inhibition of the mitochondrial uptake of long-chain fatty acids was achieved by treating rats with 2-tetradecylglycidic acid (TDGA), a potent inhibitor of the overt form of carnitine palmitoyltransferase (CPT-I). The maximum aggregation rate (MAR), CPT-I activity, lactate production, oxygen consumption and adenine nucleotide content of isolated rat platelets were then studied in vitro. 4 h after the in vivo administration of TDGA, the CPT-I activity in saponin-permeabilized platelets was nearly completely inhibited along with a significant reduction in the MAR induced by ADP, thrombin and ionophore A23187. The ATP level, adenylate energy charge (ATP + 1/2 ADP)/(ATP + ADP + AMP) and ATP/ADP ratio in the platelet cytoplasmic pool were also reduced. Platelets from TDGA-treated rats showed lower oxygen consumption rates in both the basal respiratory and oxygen burst states. These results indicate that mitochondrial long-chain fatty acid oxidation coupled to oxidative phosphorylation is an important energy source in rat platelets and is probably involved in the maintenance of platelet function. Enhanced in vitro lactate production in platelets from TDGA-treated rats may have resulted from a compensatory increase in glycolysis which only partly compensated for impaired long-chain fatty acid oxidation.  相似文献   

5.
The effects of lowered O2 tension on insulin secretion and changes in cellular energy parameters were investigated in isolated rat pancreatic islets perifused with buffers equilibrated with 21, 9, 5, and 1% oxygen and containing 5 mM glucose. Decreasing the external [O2] reduced the amount of insulin released in response to 16 mM glucose, 20 mM alpha-ketoisocaproic acid, and 40 mM KCl. Secretion elicited by high glucose or KCl had declined significantly at 9% oxygen, whereas that caused by alpha-ketoisocaproic acid became inhibited below 5% O2. Lowering the oxygen tension also decreased the ability of islets to respond with a rise in [ATP]/[ADP] upon stimulation with metabolic secretagogues. This reduction in the evoked increase in the nucleotide ratios paralleled the inhibition of stimulated insulin secretion. Addition of 2 mM amytal markedly decreased the islet energy level and eliminated the secretory response to 16 mM glucose. The results suggest that enhancement of B-cell energy production and a consequent rise in [ATP] (or [ATP]/[ADP]) are a necessary event for the hormone release elicited by high glucose and alpha-ketoisocaproic acid. A decrease in temperature inhibited insulin secretion with all three secretagogues tested. The energies of activation were similar for high glucose and KCl-induced secretion, about 20 kcal/mol, but were higher for alpha-ketoisocaproic acid, about 35 kcal/mol. At 28 degrees C, the [ATP]/[ADP] was larger than that at 38 degrees C (8 versus 5) and was not increased further upon addition of 16 mM glucose. It is suggested that a decrease in the rate of energy production at lowered temperatures may contribute to the inhibition of insulin release caused by metabolic secretagogues.  相似文献   

6.
Gastric ulcer was elicited in rats by reserpine (5 mg x kg-1 sc.) administration. Ulcer formation (number and severity) was measured 6, 12, 18 and 24 hr after reserpine administration. At the time of killing of the animals, tissue levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic adenosine monophosphate (cAMP) were measured enzymatically and by radioimmunoassay in the gastric fundal mucosa. The sum of ATP + ADP + AMP (adenylate pool) and the ratio of ATP x ADP-1 were calculated. It was found that (1) the tissue levels of ATP, AMP, cAMP, sum of ATP / ADP + AMP (adenylate pool) and ratio of ATP x ADP-1 increased significantly in the gastric fundal mucosa 6 hr after reserpine administration, thereafter these values decreased gradually and significantly; (2) the tissue level of ADP increased significantly in the gastric fundal mucosa 6 hr after reserpine administration, meanwhile its level increased significantly at 18 and 24 hr; (3) the value of energy charge (ATP + 0.5 ADP x ATP + ADP + AMP-1) remained unchanged; (4) the peaks of biochemical alterations in the gastric fundus mucosa preceded he appearance of ulcers. It was concluded that (1) reserpine ulcer appears after an active metabolic response in the rat gastric fundal mucosa; (2) hypoxaemic damage in the gastric fundal mucosa can be excluded as a possible underlying mechanism of ulcer formation produced by reserpine administration; (3) before the appearance of reserpine ulcer, significant changes in the feedback mechanism, system, i.e. between the ATP--membrane ATPase--ADP and the ATP--adenylate cyclase--cAMP energy systems, can be observed in the rat gastric fundal mucosa.  相似文献   

7.
The shift down of glucose in the growth medium lowered the energetic status of cells whereas that of ammonium elevated it, which was indicative of their specific effect on metabolism. The shift up of glucose within the first four seconds promptly increased the intracellular ATP pool, the energy charge and the ATP/ADP ratio up to values characteristic of growth, while the addition of ammonium after its exhaustion resulted in the opposite effect. The described changes are typical of an incomplete coupling between energetic and constructive metabolic types in E. coli.  相似文献   

8.
When platelets are treated with H2O2 the metabolic ATP content decreases sharply (Holmsen, H., and Robkin, L. (1977) J. Biol. Chem. 252, 1752-1757). Here we report that the loss of metabolic energy is fully recovered in phosphorylated glycolytic intermediates. A mixture of antimycin A/2-deoxy-D-glucose/D-gluconic acid-1,5-lactone blocks mitochondrial ATP resynthesis and prevents the entry of sugars into the glycolytic sequence. The energy-rich phosphates in the adenylate and the glycolytic pool are then consumed in a specific order. First, the glycolytic pool is consumed at a rate of 4.5 mumol of ATP equivalents/min/10(11) cells, and metabolic ATP and ADP are kept stable; then the consumption of the glycolytic pool decreases and metabolic ATP and ADP are consumed, together keeping up with the same rate of energy consumption. Thrombin stimulation increases the energy consumption to about 17 mumol of ATPeq/min/10(11) cells which is now furnished by both the glycolytic and the adenylate pool, again with a preferential consumption of the former. The results show that H2O2 triggers a shift of energy-rich phosphates from the adenylate to the glycolytic pool and that the latter remains rapidly accessible to energy consumption thereby stabilizing the level of metabolic ATP. The adenylate energy charge is independent of the distribution of energy among the two pools, which extends its importance to the regulation of energy supply and demand beyond the adenylate pool.  相似文献   

9.
Recent results suggest consideration of a new concept for oxidative phosphorylation in which a prime function of energy is to bring about release of ATP formed at the catalytic site by reversal of hydrolysis. Data with submitochondrial particles include properties of an uncoupler insensitive Pi=HOH exchange, a rapid reversible formation of bound ATP in presence of uncouplers, and predictable patterns of 32-Pi incorporation into ATP in rapid mixing experiments. ADP is confirmed as the primary Pi acceptor in mitochondrial ATP synthesis, but with chloroplasts ADP is also rapidly labeled. Other findings with pyrophosphatase and with transport ATPase harmonize with the new concept. Measurements of the reversal of ATP cleavage and binding by myosin suggest that oxygen exchanges result from reversible cleavage of ATP to ADP and Pi at the catalytic site and that the principal free energy change in ATP cleavage occurs in ATP binding. Reversal of conformational changes accompanying ATP binding and cleavage is proposed to drive the actin filament in contraction. Thus energy transductions linked to ATP in both mitochondria and muscle may occur primarily through protein conformational change.  相似文献   

10.
When Azotobacter vinelandii, growing diazotrophically in chemostat culture, was subjected to sudden increases in the ambient oxygen concentration (oxygen stress), nitrogenase activity was switched off and cellular ATP pools decreased at rates depending on the stress level. Following a fast decrease, the ATP pool approached a lower level. When the stress was released, these effects were reversed. The reversible decrease of the ATP pool upon oxygen stress could also be observed with cultures assimilating ammonium and, at the same time, fixing dinitrogen because of growth at a high C/N ratio but not with cultures growing only at the expense of ammonium. When strains OP and UW136 of A. vinelandii were subjected to long-term increases in ambient oxygen, the sizes of cellular ATP pools eventually started to increase to the level before stress and diazotrophic growth resumed. The cytochrome d-deficient mutant MK5 of A. vinelandii, however, impaired in aerotolerant diazotrophic growth, was unable to recover from stress on the basis of its ATP pool. The results suggest that adaptation to higher ambient oxygen depends on increased ATP synthesis requiring increased electron flow through the entire respiratory chain, which is possible only in combination with the more active, yet possibly uncoupled, branch terminated by cytochrome d. It is proposed that the decrease of the cellular ATP level under oxygen stress resulted from the increased energy and electron donor requirement of nitrogenase in reacting with oxygen.  相似文献   

11.
Summary It is well known that Acetobacter is extremely sensitive in high total concentrations (GK)1 of ethanol and acetic acid. In the acetator, at a total concentration (GK) of 13%, ATP pool and growth show reverse behaviour. During the stationary, acidifying phase, the extracellular adenylate concentration amounts to 70% of the total edenylate pool (AN=ATP+ADP+AMP). In this range, the average value of the intracellular energy charge [EC=(ATP+1/2ADP)/(ATP+ADP+AMP)] is 0.82.After 45 s of interruption of aeration, the EC of the total culture dropped to a value of 0.58. After several weeks of storage, the EC of the inoculum amounted to 0.50.  相似文献   

12.
  1. The ATP pool in Nitrobacter winogradskyi cells was determined by means of the luciferin-luciferase enzyme system and the ADP and AMP pools were measured after enzymatic conversion into ATP.
  2. In the fist 10 min after addition of nitrite to endogenously respiring cells, which had stood for 5–16 days after completion of the nitrite oxidation, the ATP pool dropped about 60%.
  3. During the log phase the ATP pool was approx. 20–40 pmoles/5 μg cell-N. During growth it increased exponentially by 3–4 times the amount until the nitrite had been used up. Subsequently the ATP pool decreased at first rapidly and then more slowly without sinking to 0 in the first 2 months after nitrification.
  4. Nitrite oxidizing cells had an energy charge of 0.37 during the log-phase. After approx. 90% of the substrate had been used up the energy charge had reached 0.57.
  5. If the CO2 assimilation was inhibited in growing cultures by increased oxygen partial pressure, nitrite oxidation continued but the ATP pool increased.
  6. The ATP pool and the activity of the endogenous respiration decreased by more than 50% during the first hours after the substrate had been used up.
  相似文献   

13.
Shifting Escherichia coli from aerobic to anaerobic growth caused changes in the ratio of [ATP]/[ADP] and in negative supercoiling of chromosomal and plasmid DNA. Shortly after lowering oxygen tension, both [ATP]/[ADP] and supercoiling transiently decreased. Under conditions of exponential anaerobic growth, both were higher than under aerobic conditions. These correlations may reflect an effect of [ATP]/[ADP] on DNA gyrase, since in vitro [ATP]/[ADP] influences the level of plasmid supercoiling attained when gyrase is either introducing or removing supercoils. When the supercoiling activity of gyrase was perturbed by a mutation in gyrB, a shift to anaerobic conditions resulted in plasmid supercoil relaxation similar to that seen with wild-type. However, the low level of supercoiling in the mutant persisted during a time when supercoiling in wild-type recovered and then exceeded aerobic levels. Thus, changes in oxygen tension can alter DNA supercoiling through an effect on gyrase, and correlations exist between changes in supercoiling and changes in the intracellular ratio of [ATP]/[ADP].  相似文献   

14.
The oxygen exchange parameters for the hydrolysis of ATP by the F1-ATPase have been determined over a 140,000-fold range of ATP concentrations and a 5,000-fold range of reaction velocity. The average number of water oxygens incorporated into each Pi product ranges from a limit of about 1.02 at saturating ATP concentrations to a limit of about 3.97 at very low ATP concentrations. The latter value represents 400 reversals of hydrolysis of bound ATP prior to Pi dissociation. In accord with the binding change mechanism, this means that ATP binding at one catalytic site increases the off constant of Pi and ADP from another catalytic site by at least 20,000-fold, equivalent to the use of 6 kcal mol-1 of ATP binding energy to promote product release. The estimated rate of reversal of hydrolysis of F1-ATPase-bound ATP to bound ADP + Pi varies only about 5-fold with ATP concentration. The rate is similar that observed previously for reversal of bound ATP hydrolysis or synthesis with the membrane-bound enzyme and is greater than the rate of net ATP formation during oxidative phosphorylation. This adds to evidence that energy input or membrane components are not required for bound ATP synthesis.  相似文献   

15.
The biochemical background of ethanol-(ETOH) induced gastric mucosal damage was studied in rats with intact vagus and after acute surgical vagotomy. Observations were carried out on Sprague-Dawley (CFY) strain rats of both sexes. Gastric mucosal lesions were produced by intragastric administration of 1 ml 96% ethanol. Bilateral truncal surgical vagotomy was carried out 30 min before ETOH administration. The number and severity of gastric mucosal lesions was noted 1 h after ETOH administration. Biochemical measurements (gastric mucosal level of ATP, ADP, AMP, cAMP and lactate) were carried out from the total homogenized gastric mucosa. The adenylate pool (ATP + ADP + AMP), energy charge ((ATP + 0.5 ADP)/(ATP + ADP + AMP)) and ratio of ATP/ADP were calculated. It was found that: 1) ATP transformation into ADP increased, while ATP transformation in cAMP decreased in ethanol-treated animals with intact vagus nerve, while these transformations were quite the opposite in vagotomized animals; 2) no significant changes were found in the tissue level of lactate: and 3) the extent of biochemical changes was significantly less after surgical vagotomy. It is concluded that an intact vagus is basically necessary for the metabolic adaptation of gastric mucosa.  相似文献   

16.
The variations in the levels of adenine nucleotides during the phased growth (cell cycle) of the yeast Candida utilis growing under nitrogen, sulfate, or iron limitation with glycerol as carbon source have been determined. Synchronous cultures were obtained by the continuous phasing technique, and the results were compared with those of chemostat cultures growing at similar growth rates and under the same types of nutrient limitation. Whereas the chemostat experiments indicated only the average energy status of cultures growing at random, results from phased cultures showed that the adenylate energy charge, defined as (ATP + (1/2)ADP)/(ATP + ADP + AMP) (where ATP, ADP, and AMP signify adenosine 5'-triphosphate, -diphosphate, and -monophosphate, respectively), varied during the phased growth of the yeast. These variations were related to the stage of development of the cells and to the type of nutrient limitation. In every case the energy charge dropped to a low value during the first half of the phasing cycle (cell cycle). Whereas the energy charge was maintained at relatively high levels (ranging from 0.78 to 0.94), for sulfate- or nitrogen-limited cultures, it was very low when iron was the growth-limiting nutrient (0.44 to 0.78). In spite of the low energy charge, the yeast continued to grow under iron limitation. The main component of the adenylate pool of the iron-limited culture was ADP and not ATP as observed with other types of nutrient limitation. It is concluded that under iron limitation the growth of the organism is limited by energy and that under energy-limited growth the energy charge of a growing organism is maintained at low levels. The reason for maintaining a low energy charge in an energy-limited culture is discussed.  相似文献   

17.
The functional activity, adenine nucleotides, and creatine phosphate content of spontaneously beating isolated rabbit atria were measured prior to anoxia, after 1 hr anoxia, and at the end of 1 hr reoxygenation at pH 6.7 and 7.2 During anoxia at pH 7.2 there was 13.3% loss of adenine nucleotides pool, 35.2% loss of ATP, 36.2% increase in ADP, 200% increase in AMP, and a decrease to 8.8% of CP assayed to the beating atria in oxygen. At pH 6.7 there was almost the same decrease in CP, about 10% decrease in ATP, no change in total adenine nucleotides, no change in AMP and a higher increase in ADP (88.7%). The postanoxic recovery was much more complete when the pH was 6.7 during anoxia, and the first 40 min of reoxygenation. The extent of recovery of functional activity correlated well with the level of ATP in all cases not CP. Since the adenylate kinase and ATPase activity both decrease at acidic pH, their combined diminution would tend to preserve the adenine nucleotide pool and thus the better recovery at pH 6.7, because of a decrease in energy demand and unavailability of AMP for the degradation process. This study also supports the notion of compartmented adenine nucleotides connected by the creatine phosphate-creatine energy shuttle.  相似文献   

18.
A Kahru  R Vilu 《Microbios》1990,62(251):83-92
The effect of growth rate on ATP pool and adenylate energy charge (EC) value of Escherichia coli has been studied in batch culture on different media (mu max varying from 0.1 h-1 to 1.2 h-2) and in continuous culture at dilution rates (D = mu) from 0.045 h-1 to 0.310 h-1. Within the limits of error both ATP pool and EC values did not change with alterations in the relative growth rate of E. coli. The effect of in vivo EC values on experimental errors in ATP, ADP and AMP measurements with the luciferin-luciferase method, and, subsequently, on measurements of different ratios between adenylates, as in the case of adenylate kinase in vivo equilibrium, is discussed.  相似文献   

19.
Concentrations of ATP, ADP, AMP, cAMP as well as pyruvate and glucose-6-phosphate were measured in B. lastocladiella emersonii cells developing via RS morphogenetic pathway. They varied significantly in the course of development (1.3-14.8 mumole/g dry weight for the sum of ATP+ADP+AMP; 0.012-5.3 nmole for cAMP; 0.47-1.9 mumole for pyruvate; 0.36-4.78 mumole for glucose-6-phosphate). At the same time the adenylate energy charge remained essentially unchanged (about 0.8) from the middle of exponential growth till the end of the stationary phase. At the late stages of RS-sporangia formation the concentration of all the above compounds decreased by about 10 times, and the adenylate energy charge only by 30%. Positive correlation between the levels of ATP and cAMP in RS cells was demonstrated. The concentration of adenylic nucleotides and cAMP showed the most noticable changes at the end of exponential growth; transition of the point of no return was not accompanied by significant changes in the pools of adenylic system, cAMP or energy charge.  相似文献   

20.
The respiration of rat liver mitochondria was stimulated by three different ways of energy drain: (a) partial uncoupling (equivalent to direct collapse of the proton-motive force), (b) intramitochondrial utilization of ATP for citrulline synthesis, and (c) extramitochondrial utilization of ATP for glucose phosphorylation. At identical rates of respiration, the intramitochondrial ATP: ADP ratios were the same in all three systems. Furthermore, the proton-motive force was the same in partially uncoupled mitochondria and in the presence of hexokinase plus glucose up to a respiration rate amounting to about 60% of that of the fully active state. However, external ATP: ADP ratios were considerably different in various systems at comparable rates of oxygen uptake, being the lowest under conditions when ATP was being utilized externally. On this basis, it is concluded that the respiratory rate is controlled directly by the proton-motive force and the mitochondrial ATP-synthesizing system operates under near-equilibrium conditions with respect to the membrane energy state parameters. However, a disequilibrium exists at the step of the transport of ATP from mitochondria to the external (cytoplasmic) compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号