首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of thrombin and histamine on protein phosphorylation in intact cultured human umbilical vein endothelial cells (HUVEC) prelabeled with 32PO4 were investigated. Incubation of HUVEC with either thrombin or histamine, agonists known to induce rapid transient increases in intracellular calcium levels in HUVEC, caused a rapid reversible increase in the phosphorylation of a protein with a Mr = 100,000 independent of the presence of extracellular calcium. Immunological and biochemical studies demonstrated that this Mr = 100,000 protein is elongation factor 2 (EF-2), a substrate previously shown to be phosphorylated by calcium/calmodulin-dependent protein kinase III (Nairn, A. C., and Palfrey, H. C. (1987) J. Biol. Chem. 262, 17299-17303). EF-2 is crucial for protein synthesis because it catalyzes the translocation of peptidyl-tRNA on the ribosome. Phosphoamino acid analysis of the EF-2 immunoprecipitated from HUVEC revealed that all of the thrombin-stimulated phosphorylation occurred on threonine. EF-2 was also phosphorylated when HUVEC were treated with the calcium ionophore, ionomycin. Phosphorylation of EF-2 was not increased by treatment with D-Phe-Pro-Arg-chloromethyl ketone thrombin, phorbol dibutyrate, forskolin, or 8-bromo-cGMP. The transient nature of the phosphorylation of EF-2 is consistent with it having a role in mediating some of the transient effects of thrombin and histamine on endothelial cell protein synthesis and functional capabilities.  相似文献   

2.
Ca2+ concentration inside human umbilical vein endothelial cells was studied separately in cytosol and nucleus by a confocal laser scanning microscopy using fluo-3. The in vivo calibration curve for cytosol and nucleus showed good linearity between fluorescence intensity and Ca2+ concentration in cytosol ([Ca2+]i) and nuclei ([Ca2+]n). After calibration, [Ca2+]n was constantly higher than [Ca2+]i before and after the chelation of extracellular Ca2+ suggesting an active Ca2+ accumulation system on nuclear membrane. [Ca2+]n was also constantly higher than [Ca2+]i after the stimulation of thrombin (0.05 U/ml), FCS (10%), and thapsigargin (Tsg, 1μM). The temporal change of [Ca2+]n and [Ca2+]i was identical, and [Ca2+]i gradient towards the nucleus and peripheral or central [Ca2+]n rise was observed after these stimulations. From these results, [Ca2+]n is not only regulated by the active Ca2+ accumulation system on nuclear membrane at rest but also the generation of Inositol-triphosphate. FCS caused heterogeneous [Ca2+]n or [Ca2+]i rise from cell to cell; single spike or oscillatory change of [Ca2+]n and [Ca2+]i was observed in about 56% of cells, which were completely abolished by the chelation of extracellular Ca2+, suggesting that FCS stimulated [Ca2+]n and [Ca2+]i rise solely depending on Ca2+ influx from extracellular medium. The higher concentration of [Ca2+]n and heterogeneous [Ca2+]n rise may have important roles in nuclear-specific cellular responses. © 1996 Wiley-Liss, Inc.  相似文献   

3.
CGRP is a potent vasodilator with increased levels in fetoplacental circulation during late pregnancy. We have recently demonstrated that acute CGRP exposure to fetoplacental vessels in vitro induced vascular relaxation, but the signaling pathway of CGRP in fetoplacental vasculature remains unclear. We hypothesized that CGRP relaxes fetoplacental vasculature via regulating smooth muscle cytosolic Ca2+ concentrations. In the present study, by using human umbilical vein smooth muscle (HUVS) cells (HUVS-112D), we examined CGRP receptors, cAMP generation, and changes in cellular Ca2+ concentrations on CGRP treatment. These cells express mRNA for CGRP receptor components, calcitonin receptor-like receptor, and receptor activity-modifying protein-1. Direct saturation binding for 125I-labeled CGRP to HUVS cells and Scatchard analysis indicate specificity of the receptors for CGRP [dissociation constant (K(D)) = 67 nM, maximum binding capcity (Bmax) = 2.7 pmol/million cells]. Exposure of HUVS cells to CGRP leads to a dose-dependent increase in intracellular cAMP accumulation, and this increase is prevented by CGRP antagonist CGRP(8-37). Using fura-2-loaded HUVS cells, we monitored the effects of CGRP on intracellular Ca2+ concentration ([Ca2+]i). In the presence of extracellular Ca2+, bradykinin (10(-6) M), a fetoplacental vasoconstrictor, increases HUVS cells [Ca2+]i concentration. CGRP (10(-8) M) abolishes bradykinin-induced [Ca2+]i elevation. When the cells were pretreated with glibenclamide, an ATP-sensitive potassium channel blocker, the CGRP actions on bradykinin-induced Ca2+ influx were profoundly inhibited. In the absence of extracellular Ca2+, CGRP (10(-8) M) attenuated the increase of [Ca2+]i induced by a sarcoplasmic reticulum Ca2+ pump ATPase inhibitor thapsigargin (10(-5) M). Furthermore, Rp-cAMPS, a cAMP-dependent protein kinase A inhibitor, blocks CGRP actions on thapsigargin-induced Ca2+ release from sarcoplasmic reticulum. Our results suggested that CGRP relaxes human fetoplacental vessels by not only inhibiting the influx of extracellular Ca2+ but also attenuating the release of intracellular Ca2+ from the sarcoplasmic reticulum, and these actions might be attributed to CGRP-induced intracellular cAMP accumulation.  相似文献   

4.
A Ishihata  M Endoh 《Life sciences》1991,48(6):583-591
Confluent monolayers of human umbilical vein endothelial cells subcultured on glass coverslips were loaded with the fluorescent Ca2+ indicator, fura-2. Changes in fura-2 fluorescence were detected by means of a fluorescence spectrophotometer. Both ATP and ADP (0.3-100 microM) caused a concentration-dependent transient peak response of the intracellular free calcium concentration ([Ca2+]i), followed by a lower sustained response. AMP and adenosine did not induce detectable changes in [Ca2+]i. The sustained response to ATP was abolished by superfusion with the Ca2(+)-free solution (with 1 mM EGTA), while the transient peak response was uninfluenced. The transient peak response to ATP (30 microM) was inhibited by pre-exposure to ATP in a graded manner depending on the concentration of ATP. The response to ATP recovered after washout for 20 min with the solution containing Ca2+, but not with the Ca2(+)-free solution. The transient peak response to ATP was markedly reduced by preceding exposure to histamine, while the response to histamine was not influenced by pre-exposure to ATP. These findings indicate that depletion and refilling of the ATP-sensitive intracellular Ca2+ store may be responsible for the desensitization and recovery of the ATP-induced [Ca2+]i response. The pharmacological characteristics of the ATP-sensitive intracellular Ca2+ store seem different from those of the histamine-sensitive store.  相似文献   

5.
We studied the local viscoelasticity of the apical membrane of human umbilical vein endothelial cells within confluent layers by magnetic tweezers microrheometry. Magnetic beads are coupled to various integrins by coating with fibronectin or invasin. By analyzing the deflection of beads evoked by various force scenarios we demonstrate that the cell envelope behaves as a linear viscoelastic body if forces up to 2 nN are applied for short times (<20 s) but can respond in an adaptive way if stress pulses are applied longer (>30 s). The time-dependent shear relaxation modulus G(t) exhibits three time regimes: a fast response (t < 0.05 s) where the relaxation modulus G(t) obeys a power law G(t) approximately t(-0.82+/-0.02); a plateau-like behavior (at 0.05 s < t < 0.15 s); and a slow flow-like response which is, however, partially reversible. Strain field mapping experiments with colloidal probes show that local forces induce a strain field exhibiting a range of zeta = 10 +/- 1 microm, but which could only be observed if nonmagnetic beads were coupled to the cell surface by invasin. By application of the theory of elasticity of planar bodies we estimated a surface shear modulus of 2.5 x10(-4) N/m. By assuming a thickness of the actin cortex of approximately 0.5 microm we estimate a Young modulus micro approximately 400 Pa for the apical membrane. The value agrees with a plateau modulus of an entangled or weakly cross-linked actin network of an actin concentration of 100 microM (mesh size 0.2 microm). This result together with our observation of a strong reduction of the shear modulus by the actin destabilizing agent latrunculin A suggests that the shear modulus measured by our technique is determined by the actin cortex. The effect of two ligands inducing actin stress fiber formation and centripetal contraction of cells (associated with the formation of gaps in the confluent cell monolayer) on the viscoelastic responses were studied: histamine and lysophosphatidic acid (LPA). Histamine evoked a dramatic increase of the cell stiffness by >1 order of magnitude within <30 s, which is attributed to a transient rise of the intracellular Ca(2+) level, since DMSO exerted a similar effect. The stiffening is accompanied by a concomitant rounding of the cells as observed by microinterferometry and relaxes partially in the timescale of 5 min, whereas gaps between cells close after approximately 30 min. LPA did not exert a remarkable and reproducible effect other than an occasional very weak transient increase of the shear stiffness, which shows that the gap formation activated by LPA is mediated by a different mechanism than that induced by histamine.  相似文献   

6.
Florea SM  Blatter LA 《Cell calcium》2008,43(4):405-415
Oxidative stress imposed by the accumulation of oxygen free radicals (reactive oxygen species, ROS) has profound effects on Ca2+ homeostasis in the vascular endothelium, leading to endothelial dysfunctions and the development of cardiovascular pathologies. We tested the effect of the oxidant and ROS generator tert-butyl-hydroperoxide (tBuOOH) on Ca2+ signaling in single cultured calf pulmonary artery endothelial (CPAE) cells loaded with the fluorescent Ca2+ indicator indo-1. Acute brief (5 min) exposures to tBuOOH had no effect on basal cytosolic free Ca2+ ([Ca2+](i)), agonist (ATP)-induced Ca2+ release from the endoplasmic reticulum (ER) and on Ca(2+) store depletion-dependent capacitative Ca2+ entry (CCE). Prolonged (60 min) exposure to tBuOOH did not affect intracellular Ca2+ release, but caused a profound inhibition of CCE. After 120 min of treatment with tBuOOH not only was CCE further reduced, but also ATP-induced Ca2+ release due to a slow depletion of the stores that resulted from CCE inhibition. The antioxidant Trolox (synthetic vitamin E analog) prevented the inhibition of CCE by tBuOOH and attenuated the increase of [ROS](i), indicating that inhibition of CCE was due to the oxidant effects of tBuOOH. The data suggest that in vascular endothelial cells oxidative stress primarily affects Ca2+ influx in response to Ca2+ loss from internal stores. [Ca2+](i) is an important signal for the production and release of endothelium-derived factors such as nitric oxide (NO). Since CCE is the preferential Ca2+ source for NO synthase activation, the finding that oxidative stress inhibits CCE may explain how oxidative stress contributes to endothelial dysfunction-related cardiovascular pathologies.  相似文献   

7.
We have prepared apolyclonal mouse antibody directed against the first threeimmunoglobulin-like domains of the kinase insert domain-containingreceptor (KDR) tyrosine kinase. It possesses the ability to inhibitbinding of the 165-amino acid splice variant of vascular endothelialcell growth factor (VEGF165) torecombinant KDR in vitro as well as to reduceVEGF165 binding to human umbilical vein endothelial cells (HUVEC). These results confirm that the firstthree immunoglobulin-like domains of KDR are involved in VEGF165 interactions. The anti-KDRantibody is able to completely blockVEGF165-mediated intracellularCa2+ mobilization in HUVEC.Therefore, it appears that binding of VEGF165 to the fms-like tyrosinekinase (Flt-1) in these cells does not translate into aCa2+ response. This is furtherexemplified by the lack of response to placental growth factor (PlGF),an Flt-1-specific ligand. Additionally, PlGF is unable to potentiatethe effects of submaximal concentrations ofVEGF165. Surprisingly, theVEGF-PlGF heterodimer was also very inefficient at eliciting aCa2+ signaling event in HUVEC. Weconclude that KDR activation is crucial for mobilization ofintracellular Ca2+ in HUVEC inresponse to VEGF165.

  相似文献   

8.
Wang ZH  Hu QH  Zhong H  Deng FM  He F 《生理学报》2011,63(1):39-47
为了探讨小凹蛋白-1(caveolin-1,Cav-1)在人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)细胞外钙敏感受体(extracellular Ca2+-sensing receptor,CaR)介导Ca2+内流中的作用,本实验研究了细胞膜穴样凹陷(caveolae)结构破坏剂Filipin或Cav-1基因沉默后对CaR介导Ca2+内流的影响。Fura-2/AM负载检测细胞内Ca2+浓度(intracellular Ca2+ concentration,[Ca2+]i)。结果显示,HUVECs中CaR对不同浓度细胞外Ca2+刺激无反应。无论细胞外为零钙液或含钙液时,精胺(Spermine,2mmol/L)刺激CaR时均引起[Ca2+]i升高(P<0.05),其中细胞外液为含钙液时,[Ca2+]i升高较细胞外为零钙液时更明显(P<0.05),CaR的负性变构调节剂Calhex231(1μmol/L)均可完全阻断Spermine刺激引起的[Ca2+]i升高(P<0.05);相反,Spermine升高[Ca2+]i作用可被Filipin(1.5μ...  相似文献   

9.
Antiapoptotic effect of ouabain on human umbilical vein endothelial cells   总被引:2,自引:0,他引:2  
The present study investigates the effect of ouabain on caspase-3 activation in human umbilical vein endothelial cells (HUVEC). Ouabain (EC(50) 20 nM) reduced caspase-3 activity in HUVEC treated for 24h in a medium deprived of fibroblast growth factor (FGF). Incubation for 5h in the absence of both FGF and serum produced an increase in caspase-3 activity that was completely abolished by 100 nM ouabain. Pretreatment with the phosphatidylinositol 3 kinase (PI-3K) inhibitor, wortmannin, prevented the protective effect of ouabain against serum deprivation. Furthermore, Western blotting analysis revealed an increase in phosphorylation of extracellular signal-regulated kinases (ERK-1 and ERK-2) induced by 100nM ouabain in serum-deprived cells. In accord, pretreatment of HUVEC with PD98059, inhibitor of the ERK pathway, abrogated the effect of ouabain. Our results show that ouabain has an antiapoptotic effect on HUVEC through the activation of PI-3K and ERK dependent pathways.  相似文献   

10.
We report the novel observation that medroxyprogesterone acetate (MPA) attenuates the induction by 17beta estradiol (E2) of both nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in human umbilical vein endothelial cells. Although MPA had no effect on basal NO production or basal eNOS phosphorylation or activity, it attenuated the E2-induced NO production and eNOS phosphorylation and activity. Moreover, we examined the mechanism by which MPA attenuated the E2-induced NO production and eNOS phosphorylation. MPA attenuated the E2-induced phosphorylation of Akt, a kinase that phosphorylates eNOS. Treatment with pure progesterone receptor (PR) antagonist RU486 completely abolished the inhibitory effect of MPA on E2-induced Akt phosphorylation and eNOS phosphorylation. In addition, the effects of actinomycin D were tested to rule out the influence of genomic events mediated by nuclear PRs. Actinomycin D did not affect the inhibitory effect of MPA on E2-induced Akt phosphorylation. Furthermore, the potential roles of PRA and PRB were evaluated. In COS cells transfected with either PRA or PRB, MPA attenuated E2-induced Akt phosphorylation. These results indicate that MPA attenuated E2-induced NO production via an Akt cascade through PRA or PRB in a non-genomic manner.  相似文献   

11.
In the absence of external Ca2+, 100 microM histamine evoked a transient increase in intracellular Ca2+ ([Ca2+]i), and subsequent addition of Ca2+ to the medium resulted in a sustained increase in [Ca2+]i in fura-2-loaded human gingival fibroblasts. These Ca2+ mobilizations are attributed to Ca2+ release from intracellular stores and Ca2+ entry, respectively. When the histamine H1 antagonist chlorpheniramine was added after the histamine-induced transient increase in [Ca2+]i, the Ca2+ entry induced by the addition of Ca2+ was inhibited. In the fibroblasts pretreated with cyclooxygenase inhibitors, indomethacin (1 microM) or aspirin (100 microM), histamine-induced Ca2+ entry was significantly inhibited, but not the transient [Ca2+]i increase. These results suggest that the histamine-induced Ca2+ entry requires the continuous binding of histamine to the H1 receptors and is regulated by prostaglandins, which are probably produced due to the H1 receptor activation.  相似文献   

12.
Regulation of cytosolic Ca2+ in clonal human muscle cell cultures   总被引:4,自引:0,他引:4  
Human muscle cells were grown in culture and clonally selected for fusion potential. The concentration of cytoplasmic ionized calcium, [Ca2+]i, was measured in monolayers of fused myotubes using the Ca2+ indicator indo-1. The contributions of independent routes of Ca2+ influx and efflux to/from the cytoplasm on [Ca2+]i were investigated. The resting [Ca2+]i was 170-190 nM in different cell clones. Acetylcholine increased [Ca2+]i by about 2-fold in the presence of absence of extracellular Ca2+. Cell depolarization by K+ elevated [Ca2+]i about 3-fold, and this increase was largely dependent on extracellular Ca2+. Replacing Na+ by N-methylglucammonium+ raised [Ca2+]i greater than 5-fold, and 50% of this increase was dependent on extracellular Ca2+. All these increases in [Ca2+]i were transient, returning to basal [Ca2+]i within 2 min. It is concluded that cells in culture [Ca2+]i can be elevated transiently by acetylcholine through Ca2+ release from intracellular stores, and by K through Ca2+ influx. The return to basal [Ca2+]i is due to Na+/Ca2+ exchange and Ca2+-ATPase activity.  相似文献   

13.
A fluid streamthrough a microtube was applied to cultured human aortic endothelialcells to investigate the endothelial responses of both the ioniccurrents and intracellular Ca2+concentration([Ca2+]i)to mechanical stimulation. The fluid stream induced an increase in[Ca2+]ithat was dependent on both the flow rate and the extracellular Ca2+ concentration.Gd3+ and niflumic acid inhibitedthe fluid stream-induced increase in[Ca2+]i,whereas Ba2+ andtetraethylammonium ion exhibited no effect. The fluid stream-induced [Ca2+]iincrease was accompanied by the activation of an inward current at52.8 mV. The reversal potential of the fluid stream-induced current shifted to positive potentials when the externalCl concentration wasreduced but was not affected by variation of the externalNa+ concentration. During theexposure to the fluid stream,[Ca2+]iwas voltage dependent, i.e., depolarization decreased[Ca2+]i.We therefore conclude that the fluid stream-induced current is largelycarried by Cl and that theCl current may thus play arole in modulating the Ca2+ influxby altering the membrane potential of endothelial cells.

  相似文献   

14.
Diabetes mellitus causes multiple cardiovascular complications. Previous studies have shown that prolonged exposure (96 h) of human umbilical vein endothelial cells (HUVECs) to hyperglycemia causes a significant increase in apoptosis. We report here that this increase in apoptosis is associated with an increase in Ca(2+) current (whole cell patch-clamp recorded) resulting from Ca(2+) entry mediated by store-operated channels (SOCs). The number of apoptotic cells after prolonged high glucose (HG, 30 mmol/L) exposure was significantly reduced in the presence of the SOC inhibitor 2-APB or of La(3+). A marked increase (approximately 80%) in Ca(2+)-dependent calcineurin (CN-A) phosphatase activity also occurred after prolonged HG exposure. Prolonged HG exposure-induced increase in CN-A activity was prevented by 2-APB, and selective CN-A phosphatase inhibition by FK506 or calmodulin inhibition by calmidazolium decreased HG-induced apoptosis. Blocking hydrogen peroxide production using catalase or inhibiting the tyrosine kinase pp60(src) during prolonged exposure to HG, resulted in a marked decrease in apoptosis and was further associated with a significant reduction in CN-A phosphatase activity. The results demonstrate a significant role for Ca(2+) entry in HG-induced apoptosis in HUVECs, and suggest that this role is mediated via H(2)O(2) generation and the action of the Ca(2+)-activated protein phosphatase calcineurin.  相似文献   

15.
Moderate consumption of natural dietary polyphenolic compounds can reduce the risk of cardiovascular diseases. Here we investigated the protective effects of delphinidin against oxidized low-density lipoprotein (oxLDL)-induced damage in human umbilical vein endothelial cells (HUVECs). The MTT assay showed that 2 h pre-incubation with delphinidin markedly restored the oxLDL-induced viability loss in HUVECs in a concentration-dependent manner. This effect was accompanied by a significant decrease in intracellular reactive oxygen species. Moreover, delphinidin imposed preventive effects on suppressing the production of lipid peroxidation, restoring the activities of endogenous antioxidants, and increasing the level of nitric oxide. Pre-incubation of delphinidin with HUVECs led to the reduction of apoptosis. Finally, delphinidin can efficiently prevent the down-regulation of Bcl-2 protein and up-regulation of Bax protein. Together, our findings suggest that delphinidin can effectively protect HUVECs against oxidative stress induced by oxLDL, which may be important for preventing both plaque development and stability in atherosclerosis.  相似文献   

16.
Cryopreservation of endothelium is one of the major challenges in the cryopreservation of complex tissues. Human umbilical vein endothelial cells (HUVECs) in suspension are available commercially and recently their post-thaw cell membrane integrity was significantly improved by cryopreservation in 5% dimethyl sulfoxide (Me2SO) and 6% hydroxyethyl starch (HES). However, cryopreservation of cells in monolayers has been elusive. The exact mechanisms of damage during cell monolayer cryopreservation are still under investigation. Here, we show that a combination of different factors contribute to significant progress in cryopreservation of endothelial monolayers. The addition of 2% chondroitin sulfate to 5% Me2SO and 6% HES and cooling at 0.2 or 1 °C/min led to high membrane integrity (97.3 ± 3.2%) immediately after thaw when HUVECs were cultured on a substrate with a coefficient of thermal expansion similar to that of ice. The optimized cryopreservation protocol was applied to monolayers of primary porcine corneal endothelial cells, and resulted in high post-thaw viability (95.9 ± 3.7% membrane integrity) with metabolic activity 12 h post-thaw comparable to unfrozen control.  相似文献   

17.
Acetylcholinesterase is an enzyme whose best-known function is to hydrolyze the neurotransmitter acetylcholine. Acetylcholinesterase is expressed in several noncholinergic tissues. Accordingly, we report for the first time the identification of acetylcholinesterase in human umbilical cord vein endothelial cells. Here we further performed an electrophoretic and biochemical characterization of this enzyme, using protein extracts obtained by solubilization of human endothelial cell membranes with Triton X-100. These extracts were analyzed under polyacrylamide gel electrophoresis in the presence of Triton X-100 and under nondenaturing conditions, followed by specific staining for cholinesterase or acetylcholinesterase activity. The gels revealed one enzymatically active acetylcholinesterase band in the extracts that disappeared when staining was performed in the presence of eserine (an acetylcholinesterase inhibitor). Performing western blotting with the C-terminal anti-acetylcholinesterase IgG, we identified a single protein band of approximately 70 kDa, the molecular mass characteristic of the human monomeric form of acetylcholinesterase. The western blotting with the N-terminal anti-acetylcholinesterase IgG antibody revealed a double band around 66-70 kDa. Using the Ellman's method to measure the cholinesterase activity in human umbilical vein endothelial cells, regarding its substrate specificity, we confirmed the existence of an acetylcholinesterase enzyme. Our studies revealed a predominance of acetylcholinesterase over other cholinesterases in human endothelial cells. In conclusion, we have demonstrated the existence of a membrane-bound acetylcholinesterase in human endothelial cells. In future studies, we will investigate the role of this protein in the endothelial vascular system.  相似文献   

18.
Cellular senescence of endothelial cells is a damage and stress response which induces pro-inflammatory, pro-atherosclerotic, and pro-thrombotic phenotypes. Donepezil is a drug used for the treatment of mild to moderate dementia of the Alzheimer’s disease (AD). The aim of the present study was to investigate the attenuation of endothelial cell senescence by donepezil and to explore the mechanisms underlying the anti-aging effects of donepezil. Our results indicated that high glucose (HG) markedly decreased cell viability of human umbilical vein endothelial cells (HUVECs), and this phenomenon was reversed by treatment with donepezil. Importantly, our results displayed that the frequency of senescent (SA-ß-gal-positive) cells and the expression level of senescence genes (PAI-1 and p21) were significantly higher in the HG group compared with the normal glucose (NG) group, and these changes were blocked by treatment with donepezil. Also, our results showed that donepezil inhibits the generation of reactive oxygen species (ROS), which promotes cellular senescence. Pretreatment with nicotinamide (NAM), a sirtuin 1 (SIRT1) inhibitor, inhibited the reduction in senescence associated with donepezil. Indeed, our results indicated that donepezil increased the SIRT1 enzyme activity. Therefore, these results show that donepezil delays cellular senescence that is promoted under HG condition via activation of SIRT1.  相似文献   

19.
In this study the relationship between the efficiency of endoplasmic reticulum (ER) Ca2+ refilling and the extent of Ca2+ entry was investigated in endothelial cells. ER and mitochondrial Ca2+ concentration were measured using genetically encoded Ca2+ sensors, while the amount of entering Ca2+ was controlled by varying either the extracellular Ca2+ or the electrical driving force for Ca2+ by changing the plasma membrane potential. In the absence of an agonist, ER Ca2+ replenishment was fully accomplished even if the Ca2+ concentration applied was reduced from 2 to 0.5mM. A similar strong efficiency of ER Ca2+ refilling was obtained under condition of plasma membrane depolarization. However, in the presence of histamine, ER Ca2+ refilling depended on mitochondrial Ca2+ transport and was more susceptible to membrane depolarization. Store-operated Ca2+ entry (SOCE), was strongly reduced under low Ca2+ and depolarizing conditions but increased if ER Ca2+ uptake was blocked or if ER Ca2+ was released continuously by IP(3). A correlation of the kinetics of ER Ca2+refilling with cytosolic Ca2+ signals revealed that termination of SOCE is a rapid event that is not delayed compared to ER refilling. Our data indicate that ER refilling occurs in priority to, and independently from the cytosolic Ca2+ elevation upon Ca2+ entry and that this important process is widely achieved even under conditions of diminished Ca2+entry.  相似文献   

20.
During an agonist stimulation of endothelial cells, the sustained Ca2+ entry occurring through store-operated channels has been shown to significantly contribute to smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). However, the mechanisms linking Ca2+ stores depletion to the opening of such channels are still elusive. We have used Ca2+ and tension measurements in intact aortic strips to investigate the role of the Ca2+-independent isoform of phospholipase A2 (iPLA2) in endothelial store-operated Ca2+ entry and endothelium-dependent relaxation of smooth muscle. We provide evidence that iPLA2 is involved in the activation of endothelial store-operated Ca2+ entry when Ca2+ stores are artificially depleted. We also show that the sustained store-operated Ca2+ entry occurring during physiological stimulation of endothelial cells with the circulating hormone ATP is due to iPLA2 activation and significantly contributes to the amplitude and duration of ATP-induced endothelium-dependent relaxation. Consistently, both iPLA2 metabolites arachidonic acid and lysophosphatidylcholine were found to stimulate Ca2+ entry in native endothelial cells. However, only the latter triggered endothelium-dependent relaxation through NO release, suggesting that lysophosphatidylcholine produced by iPLA2 upon Ca2+ stores depletion may act as an intracellular messenger that stimulates store-operated Ca2+ entry and subsequent NO production in endothelial cells. Finally, we found that ACh-induced endothelium relaxation also depends on iPLA2 activation, suggesting that the iPLA2-dependent control of endothelial store-operated Ca2+ entry is a key physiological mechanism regulating arterial tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号