首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Long‐distance migration is a common phenomenon across the animal kingdom but the scale of annual migratory movements has made it difficult for researchers to estimate survival rates during these periods of the annual cycle. Estimating migration survival is particularly challenging for small‐bodied species that cannot carry satellite tags, a group that includes the vast majority of migratory species. When capture–recapture data are available for linked breeding and non‐breeding populations, estimation of overall migration survival is possible but current methods do not allow separate estimation of spring and autumn survival rates. Recent development of a Bayesian integrated survival model has provided a method to separately estimate the latent spring and autumn survival rates using capture–recapture data, though the accuracy and precision of these estimates has not been formally tested. Here, I used simulated data to explore the estimability of migration survival rates using this model. Under a variety of biologically realistic scenarios, I demonstrate that spring and autumn migration survival can be estimated from the integrated survival model, though estimates are biased toward the overall migration survival probability. The direction and magnitude of this bias are influenced by the relative difference in spring and autumn survival rates as well as the degree of annual variation in these rates. The inclusion of covariates can improve the model's performance, especially when annual variation in migration survival rates is low. Migration survival rates can be estimated from relatively short time series (4–5 years), but bias and precision of estimates are improved when longer time series (10–12 years) are available. The ability to estimate seasonal survival rates of small, migratory organisms opens the door to advancing our understanding of the ecology and conservation of these species. Application of this method will enable researchers to better understand when mortality occurs across the annual cycle and how the migratory periods contribute to population dynamics. Integrating summer and winter capture data requires knowledge of the migratory connectivity of sampled populations and therefore efforts to simultaneously collect both survival and tracking data should be a high priority, especially for species of conservation concern.  相似文献   

2.
Climate variation and trends affect species distribution and abundance across large spatial extents. However, most studies that predict species response to climate are implemented at small spatial scales or are based on occurrence‐environment relationships that lack mechanistic detail. Here, we develop an integrated population model (IPM) for multi‐site count and capture‐recapture data for a declining migratory songbird, Wilson's warbler (Cardellina pusilla), in three genetically distinct breeding populations in western North America. We include climate covariates of vital rates, including spring temperatures on the breeding grounds, drought on the wintering range in northwest Mexico, and wind conditions during spring migration. Spring temperatures were positively related to productivity in Sierra Nevada and Pacific Northwest genetic groups, and annual changes in productivity were important predictors of changes in growth rate in these populations. Drought condition on the wintering grounds was a strong predictor of adult survival for coastal California and Sierra Nevada populations; however, adult survival played a relatively minor role in explaining annual variation in population change. A latent parameter representing a mixture of first‐year survival and immigration was the largest contributor to variation in population change; however, this parameter was estimated imprecisely, and its importance likely reflects, in part, differences in spatio‐temporal distribution of samples between count and capture‐recapture data sets. Our modeling approach represents a novel and flexible framework for linking broad‐scale multi‐site monitoring data sets. Our results highlight both the potential of the approach for extension to additional species and systems, as well as needs for additional data and/or model development.  相似文献   

3.
Predicting climate change impacts on population size requires detailed understanding of how climate influences key demographic rates, such as survival. This knowledge is frequently unavailable, even in well‐studied taxa such as birds. In temperate regions, most research into climatic effects on annual survival in resident passerines has focussed on winter temperature. Few studies have investigated potential precipitation effects and most assume little impact of breeding season weather. We use a 19‐year capture–mark–recapture study to provide a rare empirical analysis of how variation in temperature and precipitation throughout the entire year influences adult annual survival in a temperate passerine, the long‐tailed tit Aegithalos caudatus. We use model averaging to predict longer‐term historical survival rates, and future survival until the year 2100. Our model explains 73% of the interannual variation in survival rates. In contrast to current theory, we find a strong precipitation effect and no effect of variation in winter weather on adult annual survival, which is correlated most strongly to breeding season (spring) weather. Warm springs and autumns increase annual survival, but wet springs reduce survival and alter the form of the relationship between spring temperature and annual survival. There is little evidence for density dependence across the observed variation in population size. Using our model to estimate historical survival rates indicates that recent spring warming has led to an upward trend in survival rates, which has probably contributed to the observed long‐term increase in the UK long‐tailed tit population. Future climate change is predicted to further increase survival, under a broad range of carbon emissions scenarios and probabilistic climate change outcomes, even if precipitation increases substantially. We demonstrate the importance of considering weather over the entire annual cycle, and of considering precipitation and temperature in combination, in order to develop robust predictive models of demographic responses to climate change. Synthesis Prediction of climate change impacts demands understanding of how climate influences key demographic rates. In our 19‐year mark‐recapture study of long‐tailed tits Aegithalos caudatus, weather explained 73% of the inter‐annual variation in adult survival; warm springs and autumns increased survival, wet springs reduced survival, but winter weather had little effect. Robust predictions thus require consideration of the entire annual cycle and should not focus solely on temperature. Unexpectedly, survival appeared not to be strongly density‐dependent, so we use historical climate data to infer that recent climate change has enhanced survival over the four decades in which the UK long‐tailed tit population has more than doubled. Furthermore, survival rates in this species are predicted to further increase under a wide range of future climate scenarios.  相似文献   

4.
Populations of migratory songbirds in western Europe show considerable variation in population trends between species and regions. The demographic and environmental causes of these large‐scale patterns are poorly understood. Using data from Constant Effort mist‐netting studies, we investigated relationships between changes in abundance, adult survival and seasonal weather conditions among 35 western European populations of eight species of migratory warblers (Sylviidae). We used cross‐species and within‐species comparisons to assess whether annual variation in survival was correlated with weather conditions during passage or winter. We estimated survival using CJS mark‐recapture models accounting for variation in the proportion of transient individuals and recapture rates. Species wintering in the humid bioclimatic zone of western Africa had significantly higher annual survival probabilities than species wintering in the arid bioclimatic zone of Africa (the Sahel). Rainfall in the Sahel was positively correlated with survival in at least some populations of five species. We found substantially fewer significant relationships with indices of weather during the autumn and spring passage periods, which may be due to the use of broad‐scale indices. Annual population changes were correlated with adult survival in all of our study species, although species undergoing widespread declines showed the weakest relationships.  相似文献   

5.
Demographic rates such as recruitment and survival probability can vary considerably among populations of the same species due to variation in underlying environmental processes. If environmental processes are spatially correlated, nearby populations are expected to have more similar demographic rates than those further apart. Breeding populations and foraging ranges are spatially segregated in colonial seabirds, making them ideal for studying spatial patterns in demographic rates and their effects on local population dynamics. Here we explored variation in age-dependent survival probabilities across 14 colonies of Herring Gulls Larus argentatus breeding along the Dutch North Sea coast. We used long-term mark–recapture data of marked fledglings to estimate survival, and estimated spatial autocorrelation of survival probabilities. We assessed whether survival until recruitment age or until 10 years old (close to their expected lifespan) explained variation in population trajectories of each colony. Juvenile and adult survival showed a strong, but different, north-to-south gradient in survival probability, with lower juvenile but higher adult survival in northern colonies than southern colonies, whereas the spatial pattern of immature survival was less distinct. Neither recruitment nor the proportion of 10-year-old adults alive predicted whether a colony collapsed, declined, remained stable or increased. The distinct spatial pattern in survival suggests variation in regional food availability, which do not seem to drive local population dynamics. The absence of a link between survival and colony trajectories implies that connectivity between populations plays an important role affecting population dynamics.  相似文献   

6.
Climate change affects seasonal weather patterns, but little is known about the relative importance of seasonal weather patterns on animal population vital rates. Even when such information exists, data are typically only available from intensive fieldwork (e.g., mark–recapture studies) at a limited spatial extent. Here, we investigated effects of seasonal air temperature and precipitation (fall, winter, and spring) on survival and recruitment of brook trout (Salvelinus fontinalis) at a broad spatial scale using a novel stage‐structured population model. The data were a 15‐year record of brook trout abundance from 72 sites distributed across a 170‐km‐long mountain range in Shenandoah National Park, Virginia, USA. Population vital rates responded differently to weather and site‐specific conditions. Specifically, young‐of‐year survival was most strongly affected by spring temperature, adult survival by elevation and per‐capita recruitment by winter precipitation. Low fall precipitation and high winter precipitation, the latter of which is predicted to increase under climate change for the study region, had the strongest negative effects on trout populations. Simulations show that trout abundance could be greatly reduced under constant high winter precipitation, consistent with the expected effects of gravel‐scouring flows on eggs and newly hatched individuals. However, high‐elevation sites would be less vulnerable to local extinction because they supported higher adult survival. Furthermore, the majority of brook trout populations are projected to persist if high winter precipitation occurs only intermittently (≤3 of 5 years) due to density‐dependent recruitment. Variable drivers of vital rates should be commonly found in animal populations characterized by ontogenetic changes in habitat, and such stage‐structured effects may increase population persistence to changing climate by not affecting all life stages simultaneously. Yet, our results also demonstrate that weather patterns during seemingly less consequential seasons (e.g., winter precipitation) can have major impacts on animal population dynamics.  相似文献   

7.
The probability of long‐term persistence of a population is strongly determined by adult survival rates, but estimates of survival are currently lacking for most species of birds in the tropical Andes, a global biodiversity hotspot. We calculated apparent survival rates of birds in the Ecuadorian tropical Andes using a moderately long‐term (11 yr) capture–recapture dataset from three habitats that varied in how much they had been modified by human activities (native forest, introduced forest, and shrubs). We fit mark–recapture models for 28 species with habitat as a covariable. For all species, recapture rates between sampling sessions were low and varied from 0.04 for Rainbow Starfrontlets (Coeligena iris) to 0.41 for Stripe‐headed Brushfinches (Arremon assimilis) when averaged across all occupied habitats. Annual survival rates varied from 0.07 for Black‐crested Warblers (Margarornis squamiger) to 0.75 for Violet‐throated Metaltails (Metallura baroni). We found no significant differences in survival rates either among habitats or species grouped by habitat specialization. Because we found similar survival rates in native forest and human‐modified habitats, our results support those of recent studies concerning the potential value of secondary habitats for the conservation of some species of birds in the tropics. However, our conclusions are tempered by the uncertainty around the estimates of survival rates. Despite the relatively long‐term nature of our study, obtaining survival estimates for bird species in this region was challenging, and either more years of study or modification of field protocols may be needed to obtain more precise survival estimates.  相似文献   

8.
Adult survival, an important fitness component, is usually 1) lower in lighter individuals due to their reduced ability to survive winter conditions compared to heavier ones, especially in resident species at northern temperate latitudes and 2) lower in females compared with males due to higher reproductive costs incurred by females. In this paper, a capture–mark–recapture dataset of 649 cetti's warblers Cettia cetti ringed seasonally at two wetlands in central Portugal over an 11‐yr period (2000–2010) was modelled in a multi‐state framework to examine the influence of these individual covariates on apparent adult survival, while controlling for the presence of transient individuals in our study area. The probability of change in mass state (ψLight→Heavy, ψHeavy→Light) during the annual cycle was also estimated. Overall, birds survived better during spring–summer (breeding/moulting periods) compared with autumn–winter, but there was no effect of body mass on apparent adult survival probability. The modelling detected a significant interaction between sex and season, in which resident females survived better than resident males in spring–summer (?RF= 0.857 ± 0.117 and ?RM= 0.698 ± 0.181) while the opposite pattern was found in autumn–winter (?RM= 0.440 ± 0.086 and ?RF= 0.339 ± 0.084). In addition, cetti's warblers had a tendency to lose mass in spring–summer (ψHeavy → Light= 0.560 ± 0.063) and to regain mass in autumn–winter (ψLight→Heavy= 0.701 ± 0.069). This pattern of body mass change during the annual cycle may reflect energetic costs to reproduction and moulting, and/or a response to increased starvation risk during winter. High body mass, however, did not increase adult survival in this population presumably due to the relatively mild winter weather prevailing in central Portugal. Survival estimates are more likely to be explained by important ecological and behavioural differences between the two sexes in polygynous passerines. Our results highlight that studies aiming to identify the main factors shaping survival and individual fitness in polygynous species should be conducted during different phases of their annual cycle.  相似文献   

9.
Rapid population declines of many long-distance Afro-Palaearctic migratory bird species are ongoing across Europe but the demographic drivers are often poorly understood, thereby limiting the development of appropriate conservation actions. Using long-term population monitoring (39 years), capture–mark–recapture data and a matrix model, we estimated demographic parameters and the effect of climate variables on adult survival, and modelled the dynamics of an increasing population of Eurasian Scops Owls Otus scops in a landscape with agricultural abandonment in western France. The observed mean annual population growth rate was 1.055 (from 68 to 523 territorial males between 1981 and 2019). Over the study period, clutch size and hatching success were stable, but fledging success and breeding success showed slight negative trends, probably due to density-dependence. Survival varied with age, with an increase during early life and evidence for rapid senescence from 4 years old. Adult survival remained stable and was positively linked to the amount of autumn rainfall in the Sahel and to the winter North Atlantic Oscillation. Survival of younger age-classes made the largest contribution to the variance of the population growth rate, followed by clutch size, fledging success and survival of older birds. Such a long-term population increase in a landscape where intensive agriculture has decreased by 64.6% sheds some new light on the causes of the decline of European Scops Owl and other Afro-Palaearctic bird populations. We infer some of the possible causes of this large-scale decline, in particular food shortage, and discuss conservation measures that could be applicable to reverse this trend.  相似文献   

10.
Since European settlement in Australia, the geographical range of ghost bats (Macroderma gigas) has contracted northwards. Ghost bats are thought to occur in disjunct populations with little interpopulation migration, raising concerns over the current status and future viability of the southernmost colony, which has also been threatened by mining activity. To address these concerns, demographic parameters of the southernmost colony were estimated from a mark–recapture study conducted during 1975–1981. Female bats gave birth to a single young in late spring, but only 40% (22–70%, 95% CI) of females bred in their second year, increasing to 93% (87–97%, 95% CI) for females ≥ 2 years old. Sixty‐five percent of juveniles caught were female. Annual adult survival ranged between 0.57–0.77 for females and 0.43–0.66 for males, and was lowest over winter–spring and greatest in autumn–winter. Juvenile survival for the first year ranged between 0.35–0.46 for females and 0.29–0.42 for males. Adult survival varied among seasons, was negatively associated with rainfall, but was not associated with temperature beyond being lower in late winter. Poor survival may result from the inferior daytime roosts that bats must use if water seepage forces them to leave their normal roosts. Although these age‐specific rates of fecundity and survival suggested a declining population, mark–recapture estimates of the population trend indicated stability over the study period. Counts at daytime roosts also suggested a population decline, but were considered unreliable because of an increasing tendency of bats to avoid detection. It is therefore likely that some assumptions in estimating survival were violated. These results provide a caution against the uncritical use of population projections derived from mark–recapture estimates of demographic parameters, and the use of untested indices as the basis for conservation decisions.  相似文献   

11.
Conservation of migratory animals requires information about seasonal survival rates. Identifying factors that limit populations, and the portions of the annual cycle in which they occur, are critical for recognizing and reducing potential threats. However, such data are lacking for virtually all migratory taxa. We investigated patterns and environmental correlates of annual, oversummer, overwinter, and migratory survival for adult male Kirtland’s warblers (Setophaga kirtlandii), an endangered, long-distance migratory songbird. We used Cormack–Jolly–Seber models to analyze two mark–recapture datasets: 2006–2011 on Michigan breeding grounds, and 2003–2010 on Bahamian wintering grounds. The mean annual survival probability was 0.58 ± 0.12 SE. Monthly survival probabilities during the summer and winter stationary periods were relatively high (0.963 ± 0.005 SE and 0.977 ± 0.002 SE, respectively). Monthly survival probability during migratory periods was substantially lower (0.879 ± 0.05 SE), accounting for ~44% of all annual mortality. March rainfall in the Bahamas was the best-supported predictor of annual survival probability and was positively correlated with apparent annual survival in the subsequent year, suggesting that the effects of winter precipitation carried over to influence survival probability of individuals in later seasons. Projection modeling revealed that a decrease in Bahamas March rainfall >12.4% from its current mean could result in negative population growth in this species. Collectively, our results suggest that increased drought during the non-breeding season, which is predicted to occur under multiple climate change scenarios, could have important consequences on the annual survival and population growth rate of Kirtland’s warbler and other Neotropical–Nearctic migratory bird species.  相似文献   

12.
To predict the impact of climate change over the whole species distribution range, comparison of adult survival variations over large spatial scale is of primary concern for long-lived species populations that are particularly susceptible to decline if adult survival is reduced. In this study, we estimated and compared adult survival rates between 1989 and 1997 of six populations of Cory's shearwater ( Calonectris diomedea ) spread across 4600 km using capture–recapture models. We showed that mean annual adult survival rates are different among populations along a longitudinal gradient and between sexes. Variation in adult survival is synchronized among populations, with three distinct groups: (1) both females and males of Corsica, Tremiti, and Selvagem (annual survival range 0.88–0.96); (2) both females and males of Frioul and females from Crete (0.82–0.92); and (3) both females and males of Malta and males from Crete (0.74–0.88). The total variation accounted for by the common pattern of variation is on average 71%, suggesting strong environmental forcing. At least 61% of the variation in survival is explained by the Southern Oscillation Index fluctuations. We suggested that Atlantic hurricanes and storms during La Niña years may increase adult mortality for Cory's shearwater during winter months. For long-lived seabird species, variation in adult survival is buffered against environmental variability, although extreme climate conditions such as storms significantly affect adult survival. The effect of climate at large spatial scales on adult survival during the nonbreeding period may lead to synchronization of variation in adult survival over the species' range and has large effects on the meta-population trends. One can thus worry about the future of such long-lived seabirds species under the predictions of higher frequency of extreme large-scale climatic events.  相似文献   

13.
ABSTRACT We investigated survival for male, female, and first-year Cape Sable seaside sparrows (Ammodramus maritimus mirabilis, hereafter sparrows), a federally endangered bird restricted to the Florida Everglades, USA. Accurate estimates of survival are critical to improve management decisions and population estimates for this and other threatened species. We used Program MARK to evaluate effects of age, sex, population membership, temporal variation, and ground-water levels on annual survival from mark-recapture data collected across 3 sparrow populations from 1997 to 2007. We found little evidence that annual survival rates differed between the populations or across ground-water levels, but we found high variability between years for both adult and juvenile survival. Our results revealed female sparrows experienced 14–19% lower survival than males. Sparrows experienced much lower survival during their first year of life and were short-lived (2–3 yr). Our results highlight sparrows' susceptibility to population declines and suggest that management actions aimed at increasing survival may be effective for this species' management.  相似文献   

14.
Population change is regulated by vital rates that are influenced by environmental conditions, demographic stochasticity, and, increasingly, anthropogenic effects. Habitat destruction and climate change threaten the future of many wildlife populations, and there are additional concerns regarding the effects of harvest rates on demographic components of harvested organisms. Further, many population managers strictly manage harvest of wild organisms to mediate population trends of these populations. The goal of our study was to decouple harvest and environmental variability in a closely monitored population of wild ducks in North America, where we experimentally regulated harvest independently of environmental variation over a period of 4 years. We used 9 years of capture–mark–recapture data to estimate breeding population size during the spring for a population of wood ducks in Nevada. We then assessed the effect of one environmental variable and harvest pressure on annual changes in the breeding population size. Climatic conditions influencing water availability were strongly positively related to population growth rates of wood ducks in our study system. In contrast, harvest regulations and harvest rates did not affect population growth rates. We suggest efforts to conserve waterfowl should focus on the effects of habitat loss in breeding areas and climate change, which will likely affect precipitation regimes in the future. We demonstrate the utility of capture–mark–recapture methods to estimate abundance of species which are difficult to survey and test the impacts of anthropogenic harvest and climate on populations. Finally, our results continue to add to the importance of experimentation in applied conservation biology, where we believe that continued experiments on nonthreatened species will be critically important as researchers attempt to understand how to quantify and mitigate direct anthropogenic impacts in a changing world.  相似文献   

15.
Changes in demographic rates underpin changes in population size, and understanding demographic rates can greatly aid the design and development of strategies to maintain populations in the face of environmental changes. However, acquiring estimates of demographic parameters at relevant spatial scales is difficult. Measures of annual survival rates can be particularly challenging to obtain because large‐scale, long‐term tracking of individuals is difficult and the resulting data contain many inherent biases. In recent years, advances in both tracking and analytical techniques have meant that, for some taxonomic groups, sufficient numbers of survival estimates are available to allow variation within and among species to be explored. Here we review published estimates of annual adult survival rates in shorebird species across the globe, and construct models to explore the phylogenetic, geographical, seasonal and sex‐based variation in survival rates. Models of 295 survival estimates from 56 species show that survival rates calculated from recoveries of dead individuals or from return rates of marked individuals are significantly lower than estimates from mark–recapture models. Survival rates also vary across flyways, largely as a consequence of differences in the genera that have been studied and the analytical methods used, with published estimates from the Americas and from smaller shorebirds (Actitis, Calidris and Charadrius spp.) tending to be underestimated. By incorporating the analytical method used to generate each estimate within a mixed model framework, we provide method‐corrected species‐specific and genus‐specific adult annual survival estimates for 52 species of 15 genera.  相似文献   

16.
Juvenile vital rates have important effects on population dynamics for many species, but this demographic is often difficult to locate and track. As such, we frequently lack reliable estimates of juvenile survival, which are necessary for accurately assessing population stability and potential management approaches to conserve biodiversity. We estimated survival rates for elusive juveniles of 3 species, the ringed salamander (Ambystoma annulatum), spotted salamander (A. maculatum), and small-mouthed salamander (A. texanum), using 2 approaches. First, we conducted an 11-month (2016–2017) mark-recapture study within semi-natural enclosures and used Bayesian Cormack-Jolly-Seber models to estimate survival and recapture probabilities. Second, we inferred the expected annual juvenile survival rate given published vital rates for pre-metamorphic and adult ambystomatids assuming stable population growth. For all 3 species, juvenile survival probabilities were constant across recapture occasions, whereas recapture probability estimates were time-dependent. Further, survival and recapture probabilities among study species were similar. Post-study sampling revealed that the initial study period median estimate of annual survival probability (0.39) underestimated the number of salamanders known alive at 11 months. We therefore appended approximately 1 year of opportunistic data, which produced a median annual survival probability of 0.50, encompassing salamanders that we knew to have been alive. Calculation from literature values suggested a mean annual terrestrial juvenile ambystomatid survival probability of 0.49. Similar results among our approaches indicated that juvenile survival estimates for the study species were robust and likely comparable to rates in nature. These estimates can now be confidently applied to research, monitoring, and management efforts for the study species and ecologically similar taxa. Our findings indicated that similarly robust vital rate estimates for subsets of ecologically and phylogenetically similar species can provide reasonable surrogate demographic information that can be used to reveal key factors influencing population viability for data-deficient species. © 2020 The Wildlife Society.  相似文献   

17.
Population age structure and vital statistics are important for understanding songbird demography and for developing conservation strategies. Field‐based estimates of survival rates based on mark–recapture methods are conservative because they are constrained by problems associated with detection probabilities and emigration. However, data collected at bird‐banding stations during spring and fall migration can potentially provide useful demographic information. I used banding data collected over a 6‐yr period (2005–2010) at Long Point Bird Observatory on the north shore of Lake Erie in Ontario, Canada, and Powdermill Avian Research Center in southeastern Pennsylvania, U.S.A., to determine if banding records could be used to estimate vital statistics for several species of songbirds. As reported in previous studies, I found the proportion of juveniles captured during fall migration to be unrealistically high to be representative of true proportions, especially at Long Point. The proportion of juvenile songbirds captured remained implausibly high during spring migration, with related estimates of longevity and generation time implausibly low and of fecundity implausibly high. Based on apparent adult survival estimates from the literature that suggest an average age structure for songbirds of >55% adults and <45% juveniles, I found that capture rates for juveniles during spring migration were at least twice as high as that for adults. A slower pace of spring migration by juveniles likely accounts for some of this bias. Because the data cannot be assumed to represent unbiased samples with respect to the age structure of populations, my results indicate that banding data collected at bird‐banding stations during migration are not suitable for use in demographic studies.  相似文献   

18.
Survival is a fundamental parameter in population dynamics with increasing importance in the management and conservation strategies of wildlife populations. Survival probability in vertebrates is usually estimated by live‐encounter data obtained by means of physical mark–capture–recapture protocols. Non‐invasive acoustic marking relying on individual‐specific features of signals has been alternatively applied as a marking technique, especially in secretive species. Nevertheless, to date no research has compared survival rate estimates obtained by acoustic and physical marking. We estimated half‐yearly and annual survival and recapture rates of a secretive and threatened passerine, the Dupont's lark Chersophilus duponti, using two separate live‐encounter data sets of males collected simultaneously by physical and acoustic marking in the same study area. The separate analysis of both methods led to different model structures, since transient individuals had to be accounted for in the acoustic marking but not in the physical marking data set. Furthermore, while reencounter probabilities did not differ between methods, survival estimates employing physical marking were lower than those obtained acoustically, especially between the postbreeding and the breeding period when the apparent survival of colour‐banded birds was twice as low as for acoustic marking. The combination of marking methods suggested the existence of different subsets of individuals differentially sampled within the population: whereas colour‐banded males seemed to represent the territorial fraction of the population, both resident and floater individuals were probably detected by acoustic marking. Using traditional mark–recapture methods exclusively could have misled our estimates of survival rates, potentially affecting prospective predictions of population dynamics. Acoustic marking has been poorly applied in mark–recapture studies, but might be a powerful complement to obtain accurate estimates of fundamental demographic parameters such as survival and dispersal.  相似文献   

19.
Assessing the drivers of survival across the annual cycle is important for understanding when and how population limitation occurs in migratory animals. Density‐dependent population regulation can occur during breeding and nonbreeding periods, and large‐scale climate cycles can also affect survival throughout the annual cycle via their effects on local weather and vegetation productivity. Most studies of survival use mark–recapture techniques to estimate apparent survival, but true survival rates remain obscured due to unknown rates of permanent emigration. This is especially problematic when assessing annual survival of migratory birds, whose movement between breeding attempts, or breeding dispersal, can be substantial. We used a multistate approach to examine drivers of annual survival and one component of breeding dispersal (habitat‐specific movements) in a population of American redstarts (Setophaga ruticilla) over 11 years in two adjacent habitat types. Annual survival displayed a curvilinear relation to the Southern Oscillation Index, with lower survival during La Niña and El Niño conditions. Although redstart density had no impact on survival, habitat‐specific density influenced local movements between habitat types, with redstarts being less likely to disperse from their previous year's breeding habitat as density within that habitat increased. This finding was strongest in males and may be explained by conspecific attraction influencing settlement decisions. Survival was lowest in young males, but movement was highest in this group, indicating that apparent survival rates were likely biased low due to permanent emigration. Our findings demonstrate the utility of examining breeding dispersal in mark–recapture studies and complement recent work using spatially explicit models of dispersal probability to obtain greater accuracy in survival estimates.  相似文献   

20.
Long-term datasets for high-elevation species are rare, and considerable uncertainty exists in understanding how high-elevation populations have responded to recent climate warming. We present estimates of demographic vital rates from a 43-year population study of white-tailed ptarmigan (Lagopus leucura), a species endemic to alpine habitats in western North America. We used capture-recapture models to estimate annual rates of apparent survival, population growth, and recruitment for breeding-age ptarmigan, and we fit winter weather covariates to models in an attempt to explain annual variation. There were no trends in survival over the study period but there was strong support for age and sex effects. The average rate of annual growth suggests a relatively stable breeding-age population ( \( \bar{\lambda } \)  = 1.036), but there was considerable variation between years for both population growth and recruitment rates. Winter weather covariates only explained a small amount of variation in female survival and were not an important predictor of male survival. Cumulative winter precipitation was found to have a quadratic effect on female survival, with survival being highest during years of average precipitation. Cumulative winter precipitation was positively correlated with population growth and recruitment rates, although this covariate only explained a small amount of annual variation in these rates and there was considerable uncertainty among the models tested. Our results provide evidence for an alpine-endemic population that has not experienced extirpation or drastic declines. However, more information is needed to understand risks and vulnerabilities of warming effects on juveniles as our analysis was confined to determination of vital rates for breeding-age birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号