首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a method and device (< 1.2 g) for recording, processing and storing data about activity and location of individuals of free‐living songbirds throughout the annual cycle. Activity level was determined every five minutes from five 100 ms samples of accelerometer data with 5 s between the sampling events. Activity levels were stored on an hourly basis throughout the annual cycle, allowing periods of resting/sleep, continuous flight and intermediate activity (foraging, breeding) to be distinguished. Measurements from a light sensor were stored from preprogrammed key stationary periods during the year to provide control information about geographic location. Successful results, including annual actogram, were obtained for a red‐backed shrike Lanius collurio carrying out its annual loop migration between northern Europe and southern Africa. The shrike completed its annual migration by performing > 66 (max. 73) nocturnal migratory flights (29 flights in autumn and > 37, max. 44, in spring) adding up to a total of > 434 (max. 495) flight hours. Migratory flights lasted on average 6.6 h with maximum 15.9 h. These flights were aggregated into eight travel episodes (periods of 4–11 nights when flights took place on the majority of nights). Daytime resting levels were much higher during the winter period compared to breeding and final part of spring migration. Daytime resting showed peaks during days between successive nocturnal flights across Sahara, continental Africa and the Arabian Peninsula, indicating that the bird was mostly sleeping between these long migratory flights. Annual activity and flight data for free‐living songbirds will open up many new research possibilities. Main topics that can be addressed are e.g. migratory flight performance (total flight investment, numbers and characteristics of flights), timing of stationary periods, activity patterns (resting/sleep, activity level) in different phases of the annual cycle and variability in the annual activity patterns between and within individuals.  相似文献   

2.
We used radio-telemetry to study autumn migratory flight initiation and orientation in relation to wind and air pressure in a nocturnal passerine migrant, the reed warbler Acrocephalus scirpaceus at Falsterbo, southwest Sweden. The majority of the reed warblers departed in the expected migratory direction towards south of southwest, while a low number of the birds took off in reverse directions between north and east. Flight directions at departure correlated with wind directions. These correlations were particularly prominent at higher wind speeds but were absent at wind speeds below 4 m/s. Birds departing in the expected migratory direction compensated completely for wind drift. The reed warblers preferred to depart during nights with tailwinds and when air pressure was increasing suggesting that reed warblers are sensitive to winds and air pressure and select favourable wind conditions for their migratory flights. Since air pressure as well as velocity and direction of the wind are correlated with the passage of cyclones, a combination of these weather variables is presumably important for the birds' decision to migrate and should therefore be considered in optimal migration models.  相似文献   

3.
In order to fully understand the orientation behaviour of migrating birds, it is important to understand when birds set their travel direction. Departure directions of migratory passerines leaving stopover sites are often assumed to reflect the birds'' intended travel directions, but this assumption has not been critically tested. We used data from an automated radiotelemetry system and a tracking radar at Falsterbo peninsula, Sweden, to compare the initial orientation of departing songbirds (recorded by radiotelemetry) with the orientation of songbird migrants in climbing and level flight (recorded by radar). We found that the track directions of birds at high altitudes and in level flight were more concentrated than the directions of departing birds and birds in climbing flight, which indicates that the birds adjust their travelling direction once aloft. This was further supported by a wide scatter of vanishing bearings in a subsample of radio-tracked birds that later passed an offshore radio receiver station 50 km southeast of Falsterbo. Track directions seemed to be more affected by winds in climbing compared with level flights, which may be explained by birds not starting to partially compensate for wind drift until they have reached cruising altitudes.  相似文献   

4.
This study tested the potential influence of meteorological parameters (temperature, humidity, wind direction, thermal convection) on different migration characteristics (namely flight speed, altitude and direction and daily distance) in 16 black storks (Ciconia nigra). The birds were tracked by satellite during their entire autumnal and spring migration, from 1998 to 2006. Our data reveal that during their 27-day-long migration between Europe and Africa (mean distance of 4100 km), the periods of maximum flight activity corresponded to periods of maximum thermal energy, underlining the importance of atmospheric thermal convection in the migratory flight of the black stork. In some cases, tailwind was recorded at the same altitude and position as the birds, and was associated with a significant rise in flight speed, but wind often produced a side azimuth along the birds'' migratory route. Whatever the season, the distance travelled daily was on average shorter in Europe than in Africa, with values of 200 and 270 km d−1, respectively. The fastest instantaneous flight speeds of up to 112 km h−1 were also observed above Africa. This observation confirms the hypothesis of thermal-dependant flight behaviour, and also reveals differences in flight costs between Europe and Africa. Furthermore, differences in food availability, a crucial factor for black storks during their flight between Europe and Africa, may also contribute to the above-mentioned shift in daily flight speeds.  相似文献   

5.
Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world''s tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.  相似文献   

6.
Many birds fly at high altitude, either during long-distanceflights or by virtue of residence in high-elevation habitats.Among the many environmental features that vary systematicallywith altitude, five have significant consequences for avianflight performance: ambient wind speeds, air temperature, humidity,oxygen availability, and air density. During migratory flights,birds select flight altitudes that minimize energy expenditurevia selection of advantageous tail- and cross-winds. Oxygenpartial pressure decreases substantially to as little as 26%of sea-level values for the highest altitudes at which birdsmigrate, whereas many taxa reside above 3000 meters in hypoxicair. Birds exhibit numerous adaptations in pulmonary, cardiovascular,and muscular systems to alleviate such hypoxia. The systematicdecrease in air density with altitude can lead to a benefitfor forward flight through reduced drag but imposes an increasedaerodynamic demand for hovering by degrading lift productionand simultaneously elevating the induced power requirementsof flight. This effect has been well-studied in the hoveringflight of hummingbirds, which occur throughout high-elevationhabitats in the western hemisphere. Phylogenetically controlledstudies have shown that hummingbirds compensate morphologicallyfor such hypodense air through relative increases in wing size,and kinematically via increased stroke amplitude during thewingbeat. Such compensatory mechanisms result in fairly constantpower requirements for hovering at different elevations, butdecrease the margin of excess power available for other flightbehaviors.  相似文献   

7.
A wide variety of the barrier crossing strategies exist among migrating songbirds, ranging from strict nocturnal flights to non‐stop flights over a few days. We evaluate barrier crossing strategies in a nocturnally migrating songbird crossing the Mediterranean Sea and the Sahara Desert, the great reed warbler, exploring variation between the sexes and within individuals. We used data from 31 year‐round light‐level geolocators tracks from 26 individuals (13 males and 13 females), with four individuals tracked for 2–3.5 consecutive years. Almost all individuals (25 of 26) prolonged their flights into the day at least on one occasion. The mean duration of these prolonged flights was 19.9 h and did not differ between sexes or seasons. Fifteen birds performed non‐stop flights during more than one full day and night (≥ 24 h; mean = 31.9 h; max = 55 h) in autumn and/or spring, but these flights were generally too short to cross an entire barrier (such as the Sahara Desert) in one non‐stop flight. Patterns of prolonged flights showed considerable within‐individual variation in females between seasons (autumn versus spring) and in both males and females between years, suggesting high individual flexibility in migration strategy. Significantly more males than females performed prolonged flights during autumn migration, but not spring, possibly reflecting sex‐specific carry‐over effects. We conclude that great reed warblers have the ability to conduct prolonged continuous flights for up to several nights and days, which potentially would allow them to cross the Sahara Desert in one non‐stop flight. However, they typically use a mixed strategy of several nocturnal flights with intermittent stopovers in combination with 1–3 prolonged flights. Prolonged flights covered less than half (44%) of the total flight time across the barriers, and the diurnal parts of the flights covered only 18% of this time.  相似文献   

8.
Migratory birds generally have higher dispersal propensity than resident species and are thus expected to show less genetic differentiation. On the other hand, specific migration patterns may promote genetic structure, such as in situations where migratory divides impede random mixing of individuals. Here we investigated population genetic structure and gene flow patterns in a polytypic passerine, the reed warbler Acrocephalus scirpaceus which shows a migratory divide in central Europe. Using ten polymorphic microsatellite loci and extensive sampling we found low but significant overall genetic differentiation (FST=0.013, G’ST=0.078, D=0.063). Hierarchical F‐statistics and barrier analyses showed low but significant genetic differentiation of Iberian populations, and also slight genetic differences across the migratory divide and between subspecies (A. s. scirpaceus and A. s. fuscus). Three individual‐based Bayesian methods, however, inferred a single genetic unit. Our study thus found low levels of genetic differentiation among reed warbler populations but this genetic differentiation was not pronounced enough to detect a clear population structure using the microsatellite data and no prior information on geographic location of the sampled individuals. This result indicates high levels of gene flow and suggests a possibly recent divergence of European populations after a rapid range expansion. Further studies are necessary to assess divergence times and to reveal the evolutionary history of the reed warbler populations.  相似文献   

9.
Based on phenology, passage and median dates gathered from large number of study sites, we measured autumn and spring migration speeds of eleven long distance migratory passerines in four different ecogeographic sectors: Europe, desert, north-eastern and eastern Africa. Results demonstrate that, during the southward autumn migration, late-departing species, such as lesser whitethroat Sylvia curruca , garden warbler S. borin , spotted flycatcher Muscicapa striata , whitethroat S. borin , and willow warbler Phylloscopus trochilus cover their migration route with a slower average migration speed across Europe than do early migrating species. During spring migration, late-departing species (marsh warbler Acrocephalus palustris , garden warbler, spotted flycatcher, red-backed shrike Lanius collurio ) across north-eastern Africa showed a higher speed than early migrating species. Our results show overall shorter migration duration estimates in spring than autumn. Sector-wise seasonal comparisons of duration indicate that migration journey in the African and desert sectors are covered in a relatively shorter time in spring than in autumn. Periods required to cover the distance between northern latitude breeding grounds and desert during both seasons were equivalent.  相似文献   

10.
This paper examines the influence of atmospheric structure andmotion (principally winds aloft) on the flight behavior andaltitudinal distribution of migrating songbirds. Bird migrationdata that I gathered using surveillance radars operated by theUnited States National Weather Service and the Federal AviationAdministration and a vertically directed fixed-beam marine radarmounted on a mobile laboratory are analyzed in relation to windsaloft. Migrating birds appear to fly at altitudes where windswill minimize the cost of transport and assist movements inseasonally appropriate directions. When migratory flights occurat altitudes that are higher than usual, a significant correlationexists between the altitude of densest migration and the altitudeof most favorable wind. Lower altitudes may be favored overslightly more favorable winds at much higher altitudes. Radardata on the flight behavior of migrating birds in the vicinityof frontal systems is also examined. The flight strategies ofmigrants (fly over the front, change the direction of flight,or land and terminate the flight) differ depending on seasonand the "thickness" of the front. Recent migration studies thatare related to atmospheric structure and motion are summarizedand related to atmospheric processes operating simultaneouslyat vastly different spatial and temporal scales.  相似文献   

11.
The Mediterranean Sea is one of the largest obstacles that has to be crossed by Palearctic birds migrating from Europe to Africa; it thus offers a good opportunity to study variations in migratory behaviour of birds facing a major ecological barrier. Using a passive infrared device, the flight directions of nocturnal migrants were determined and flight altitudes estimated at ten sites along the French and Spanish coast of the Mediterranean Sea in September and October 1995. The variation of migratory intensity, flight direction and altitude in the course of the night was examined. The highest density of migration was recorded within the first hour after sunset, followed by relatively high densities over the next several hours, and a progressive decrease in the last third of the night. In spite of broad variation in the course of the coastline relative to the basic directions of migration and specific reactions of the migrants to the local conditions, a decrease in seaward migration corresponding to an increase in landward migration from the first to the second half of the night was a general feature at nearly all sites. The results suggest a shift in the motivation of the birds depending on the time of arrival in a coastal area, leading to an adjustment in the flight behaviour of nocturnal migrants.  相似文献   

12.
Many migratory bird species fly mainly during the night (nocturnal migrants), others during daytime (diurnal migrants) and still others during both night and day. Need to forage during the day, atmospheric structure, predator avoidance and orientation conditions have been proposed as explanations for the widespread occurrence of nocturnal migration. However, the general principles that determine the basic nocturnal-diurnal variation in flight habits are poorly known. In the present study optimal timing of migratory flights, giving the minimum total duration of the migratory journey, is evaluated in a schematic way in relation to ecological conditions for energy gain in foraging and for energy costs in flight. There exists a strong and fundamental advantage of flying by night because foraging time is maximized and energy deposition can take place on days immediately after and prior to the nocturnal flights. The increase in migration speed by nocturnal compared with diurnal migration will be largest for birds with low flight costs and high energy deposition rates. Diurnal migration will be optimal if it is associated with efficient energy gain immediately after a migratory flight because suitable stopover/foraging places have been located during the flight or if energy losses during flight are substantially reduced by thermal soaring and/or by fly-and-forage migration. A strategy of combined diurnal and nocturnal migration may be optimal when birds migrate across regions with relatively poor conditions for energy deposition (not only severe but also soft barriers). Predictions about variable timing of migratory flights depending on changing foraging and environmental conditions along the migration route may be tested for individual birds by analysing satellite tracking results with respect to daily travel routines in different regions. Documenting and understanding the adaptive variability in daily travel schedules among migrating animals constitute a fascinating challenge for future research.  相似文献   

13.
Many species of migratory birds migrate in a series of solitary nocturnal flights. Between flights, they stop to rest and refuel for the next segment of their journey. The mechanism controlling this behaviour has long remained elusive. Here, we show that wild-caught migratory redstarts (Phoenicurus phoenicurus) are consistent in their flight scheduling. An advanced videographic system enabled us to determine the precise timing of flight activity in redstarts caught at a northern European stopover site during their return trip from Africa. Birds were held captive for three days in the absence of photoperiodic cues (constant dim light) and under permanent food availability. Despite the absence of external temporal cues, birds showed clear bimodal activity patterns: intense nocturnal activity alternating with diurnal foraging and resting periods. The onset of their migratory activity coincided with the time of local sunset and was individually consistent on consecutive nights. The data demonstrate that night-migrating birds are driven by autonomous circadian clocks entrained by sunset cues. This timekeeping system is probably the key factor in the overall control of nocturnal songbird migration.  相似文献   

14.
Vast numbers of insects and passerines achieve long-distance migrations between summer and winter locations by undertaking high-altitude nocturnal flights. Insects such as noctuid moths fly relatively slowly in relation to the surrounding air, with airspeeds approximately one-third of that of passerines. Thus, it has been widely assumed that windborne insect migrants will have comparatively little control over their migration speed and direction compared with migrant birds. We used radar to carry out the first comparative analyses of the flight behaviour and migratory strategies of insects and birds under nearly equivalent natural conditions. Contrary to expectations, noctuid moths attained almost identical ground speeds and travel directions compared with passerines, despite their very different flight powers and sensory capacities. Moths achieved fast travel speeds in seasonally appropriate migration directions by exploiting favourably directed winds and selecting flight altitudes that coincided with the fastest air streams. By contrast, passerines were less selective of wind conditions, relying on self-powered flight in their seasonally preferred direction, often with little or no tailwind assistance. Our results demonstrate that noctuid moths and passerines show contrasting risk-prone and risk-averse migratory strategies in relation to wind. Comparative studies of the flight behaviours of distantly related taxa are critically important for understanding the evolution of animal migration strategies.  相似文献   

15.
In migrating birds, the success of migration is determined by stopover duration, the most important factor determining overall speed of migration, and fuel deposition rate. However, very little is known about stopover durations of small migrant birds, because appropriate methods for data analysis were lacking until recently. We used a new capture-recapture analysis to estimate stopover durations of 1st-year reed warblers Acrocephalus scirpaceus, sedge warblers A. schoenobaenus and garden warblers Sylvia borin at 17 stopover sites in Europe and Africa during autumn. Average stopover duration of non-moulting reed warblers was 9.5 days while moulting conspecifics stayed about twice as long. Average stopover duration of sedge warblers was 9.1 days and, in contrast to the other two species, differed between years at several sites. Garden warblers stayed 7.7 days on average. The long stopover duration of the reed warbler, resulting in slow overall migration speed, is related to its low fuel deposition rate. It can be explained by low, but predictable, food resources and an early departure during moult. Compared to the reed warbler, the stopover duration of the sedge warbler varies more between sites and probably also between years, as the supply of its preferred diet (reed aphids) is spatially and temporally unpredictable but can be superabundant. The short stopover duration of the garden warbler, leading to high overall migration speed, can be related to high fuel deposition rates, probably brought about by a change to an abundant, predictable and long-lasting fruit diet. Within species, stopover duration did not change significantly along the migration route. Hence, an increase of migration speed along the migration route, as suggested in the literature, may be caused by longer flight bouts in the south. However, it remains largely unknown which environmental and possibly endogenous factors regulate stopover duration.  相似文献   

16.
We quantified in the garden warbler (Sylvia borin) and the barn swallow (Hirundo rustica), two long-distance migratory songbirds, the early oxidative damage (ROMs) and plasma anti-oxidant capacity (OXY) variation of individuals caught at a stop-over site after a sustained flight across the sea, during spring migration. Our main goal was to quantify the oxidative damage and anti-oxidant capacity variation in these two migratory species in relation to fat and muscle stores. The birds were sampled in Ponza, a small island along the migratory route of these species. The levels of ROMs and OXY did not show any differences between the two species and in general were higher in individuals with higher fat and protein stores. Nevertheless, the balance between ROMs and OXY was better in individuals in good condition. These patterns were similar in both species. No sex differences emerged for both ROMs and OXY in the barn swallow, the only species that could be sexed. Both markers of oxidative stress did not show any significant variation across a 30-min restrained experiment. These data are the first of this kind in wild birds in a migratory context and suggest that individuals in better condition are exposed to lower oxidative stress, providing an indirect evidence of the oxidative cost caused by prolonged flights.  相似文献   

17.
Nocturnal migration of Reed Warblers Acrocephalus scirpaceus was studied by trapping with 'high nets' on the Courish Spit (Eastern Baltic) during spring 1998–2000. In spring, Reed Warblers left the stopover site between 45 and 240 min after sunset (median 84 min), although 85% of birds took off between 45 and 120 min after sunset. Birds did not arrive until the fifth hour after sunset; 67% of birds ended their nocturnal flights in the penultimate hour before sunrise, i.e. at dawn. At the moment of migratory departure, the average Reed Warbler body mass was 12.79 ± 0.66 g ( n  = 60). Average body mass of birds ending migratory flight was 11.69 ± 0.67 g ( n  = 18). The difference was highly significant. However, more than half of the birds completed migratory flights with a considerable fuel load, and some even had energy stores sufficient for a migratory flight on the next night. The spring migratory strategy of Reed Warblers over Central and Northern Europe probably includes a succession of short migratory flights (4–6 h) during several subsequent nights with 1-day stopovers.  相似文献   

18.
Water level and water surface area fluctuations are important factors determining abundance of bird populations and bird assemblages structure in a wetland habitat. The water level and water surface area of the Marsh T?m?rd (West Hungary) changed drastically between 1998 and 2008, and the marsh dried out because of scarce rainfall in 2000 and 2001. A habitat restoration in winter 2001 repaired the waterholding capacity of the marsh. We analyzed changes in parameters of bird assemblages in investigated wetland area in relation of environmental factors. We used full redundancy analysis (RDA) on number of caugth migratory birds per year, species richness, diversity and evenness of bird assemblages to examine correlations among water level, water surface area and vegetation core. Species like water rail, common snipe, river warbler, Savi’s warbler, great reed warbler, reed warbler, marsh warbler, sedge warbler, reed bunting showed high and positive linear correlations with the water level and water surface area in the postbreeding period. Some wetland species, sedge warbler, Savi’s warbler and reed bunting as well as total number of caugth birds per year and total numbers of caugth species per year were clearly associated with thick marsh vegetation. According to our results the bird species composition of the wetland might have returned to the prerestoration levels and surface areas.  相似文献   

19.
By altering its flight altitude, a bird can change the atmospheric conditions it experiences during migration. Although many factors may influence a bird's choice of altitude, wind is generally accepted as being the most influential. However, the influence of wind is not clearly understood, particularly outside the trade‐wind zone, and other factors may play a role. We used operational weather radar to measure the flight altitudes of nocturnally migrating birds during spring and autumn in the Netherlands. We first assessed whether the nocturnal altitudinal distribution of proportional bird density could be explained by the vertical distribution of wind support using three different methods. We then used generalized additive models to assess which atmospheric variables, in addition to altitude, best explained variability in proportional bird density per altitudinal layer each night. Migrants generally remained at low altitudes, and flight altitude explained 52 and 73% of the observed variability in proportional bird density in spring and autumn, respectively. Overall, there were weak correlations between altitudinal distributions of wind support and proportional bird density. Improving tailwind support with height increased the probability of birds climbing to higher altitude, but when birds did fly higher than normal, they generally concentrated around the lowest altitude with acceptable wind conditions. The generalized additive model analysis also indicated an influence of temperature on flight altitudes, suggesting that birds avoided colder layers. These findings suggested that birds increased flight altitudes to seek out more supportive winds when wind conditions near the surface were prohibitive. Thus, birds did not select flight altitudes only to optimize wind support. Rather, they preferred to fly at low altitudes unless wind conditions there were unsupportive of migration. Overall, flight altitudes of birds in relation to environmental conditions appear to reflect a balance between different adaptive pressures.  相似文献   

20.
Each year, millions of songbirds concentrate in coastal areas during fall migration. The choices birds make at the coast about stopover habitat use and migratory route can influence both the success of their migratory journey and fitness in subsequent life stages. We made use of a regional‐scale automated radio telemetry array to study stopover and migratory flights and migratory routes of blackpoll warblers Setophaga striata and red‐eyed vireos Vireo olivaceus during fall migration in the Gulf of Maine, USA. We focused on differences between species, sexes, age groups, breeding origins, and time of year. Both species made within‐stopover relocations (i.e. ‘stopover flights’) from the coastal capture site. Stopover flights were primarily oriented inland, and were more frequent for blackpolls (87%) than vireos (44%). By studying migratory behavior at a broad spatial scale, we demonstrated that most blackpolls and vireos took coastal and offshore routes through the Gulf of Maine, despite initially relocating inland from the capture site. Though we captured blackpolls and vireos from a broad breeding range, more than 70% of migratory flights from the capture site were oriented for coastal or offshore travel for both species, suggesting that birds actively chose coastal and offshore routes, and were not simply displaced by wind drift. Later vireos oriented offshore more frequently during migratory flights from the coast, indicating that they may be more inclined towards time‐minimizing overwater flight routes and thus more exposed to coastal and offshore collision hazards than earlier conspecifics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号