首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hamza MA  Engel PC 《FEBS letters》2008,582(13):1816-1820
Clostridial glutamate dehydrogenase mutants with the 5 Trp residues in turn replaced by Phe showed the importance of Trp 64 and 449 in cooperativity with glutamate at pH 9. These mutants are examined here for their behaviour with NAD+ at pH 7.0 and 9.0. The wild-type enzyme displays negative NAD+ cooperativity at both pH values. At pH 7.0 W243F gives Michaelis-Menten kinetics, and the same behaviour is shown by W243F and also W310F at pH 9.0, but not by W64F or W449F. W243 and W310 are apparently much more important than W64 and W449 for the coenzyme negative cooperativity, implying that different conformational transitions are involved in cooperativity with the coenzyme and with glutamate.  相似文献   

2.
Cooperativity is widespread in biology. It empowers a variety of regulatory mechanisms and impacts both the kinetic and thermodynamic properties of macromolecular systems. Traditionally, cooperativity is viewed as requiring the participation of multiple, spatially distinct binding sites that communicate via ligand-induced structural rearrangements; however, cooperativity requires neither multiple ligand binding events nor multimeric assemblies. An underappreciated manifestation of cooperativity has been observed in the non-Michaelis–Menten kinetic response of certain monomeric enzymes that possess only a single ligand-binding site. In this review, we present an overview of kinetic cooperativity in monomeric enzymes. We discuss the primary mechanisms postulated to give rise to monomeric cooperativity and highlight modern experimental methods that could offer new insights into the nature of this phenomenon. We conclude with an updated list of single subunit enzymes that are suspected of displaying cooperativity, and a discussion of the biological significance of this unique kinetic response.  相似文献   

3.
4.
Wang K  Tu Y  Rappel WJ  Levine H 《Biophysical journal》2005,89(5):3017-3025
During calcium-induced calcium-release, the ryanodine receptor (RyR) opens and releases large amounts of calcium from the sarcoplasmic reticulum into the cytoplasm of the myocyte. Recent experiments have suggested that cooperativity between the four monomers comprising the RyR plays an important role in the dynamics of the overall receptor. Furthermore, this cooperativity can be affected by the binding of FK506 binding protein, and hence, modulated by adrenergic stimulation through the phosphorylating action of protein kinase A. This has important implications for heart failure, where it has been hypothesized that RyR hyperphosphorylation, resulting in a loss of cooperativity, can lead to a persistent leak and a reduced sarcoplasmic-reticula content. In this study, we construct a theoretical model that examines the cooperativity via the assumption of an allosteric interaction between the four subunits. We find that the level of cooperativity, regulated by the binding of FK506 binding-protein, can have a dramatic effect on the excitation-contraction coupling gain and that this gain exhibits a clear maximum. These findings are compared to currently available data from different species and allows for an evaluation of the aforementioned heart-failure scenario.  相似文献   

5.
A set of protein conformations are analyzed by normal mode analysis. An elastic network model is used to obtain fluctuation and cooperativity of residues with low amplitude fluctuations across different species. Slow modes that are associated with the function of proteins have common features among different protein structures. We show that the degree of flexibility of the protein is important for proteins to interact with other proteins and as the species gets more complex its proteins become more flexible. In the complex organism, higher cooperativity arises due to protein structure and connectivity.  相似文献   

6.
Abstract

A set of protein conformations are analyzed by normal mode analysis. An elastic network model is used to obtain fluctuation and cooperativity of residues with low amplitude fluctuations across different species. Slow modes that are associated with the function of proteins have common features among different protein structures. We show that the degree of flexibility of the protein is important for proteins to interact with other proteins and as the species gets more complex its proteins become more flexible. In the complex organism, higher cooperativity arises due to protein structure and connectivity.  相似文献   

7.
《Biophysical journal》2019,116(12):2314-2330
Molecular recognition is critical for the fidelity of signal transduction in biology. Conversely, the disruption of protein-protein interactions can lead to disease. Thus, comprehension of the molecular determinants of specificity is essential for understanding normal biological signaling processes and for the development of precise therapeutics. Although high-resolution structures have provided atomic details of molecular interactions, much less is known about the influence of cooperativity and conformational dynamics. Here, we used the Tiam2 PSD-95/Dlg/ZO-1 (PDZ) domain and a quadruple mutant (QM), engineered by swapping the identity of four residues important for specificity in the Tiam1 PDZ into the Tiam2 PDZ domain, as a model system to investigate the role of cooperativity and dynamics in PDZ ligand specificity. Surprisingly, equilibrium binding experiments found that the ligand specificity of the Tiam2 QM was switched to that of the Tiam1 PDZ. NMR-based studies indicated that Tiam2 QM PDZ, but not other mutants, had extensive microsecond to millisecond motions distributed throughout the entire domain suggesting structural cooperativity between the mutated residues. Thermodynamic analyses revealed energetic cooperativity between residues in distinct specificity subpockets that was dependent upon the identity of the ligand, indicating a context-dependent binding mechanism. Finally, isothermal titration calorimetry experiments showed distinct entropic signatures along the mutational trajectory from the Tiam2 wild-type to the QM PDZ domain. Collectively, our studies provide unique insights into how structure, conformational dynamics, and thermodynamics combine to modulate ligand-binding specificity and have implications for the evolution, regulation, and design of protein-ligand interactions.  相似文献   

8.
9.
Despite decades of a much improved understanding of cancer biology, we are still baffled by questions regarding the deadliest traits of malignancy: metastatic colonization, dormancy and relapse, and the rapid evolution of multiple drug and immune resistance. New ideas are needed to resolve these critical issues. Relying on finding and demonstrating parallels between collective behavior capabilities of cancer cells and that of bacteria, we suggest communal behaviors of bacteria as a valuable model system for new perspectives and research directions. Understanding the ways in which bacteria thrive in competitive habitats and their cooperative strategies for surviving extreme stress can shed light on cooperativity in tumorigenesis and portray tumors as societies of smart communicating cells. This may translate into progress in fathoming cancer pathogenesis. We outline new experiments to test the cancer cooperativity hypothesis and reason that cancer may be outsmarted through its own 'social intelligence'.  相似文献   

10.
p97 is composed of two conserved AAA (ATPases associated with diverse cellular activities) domains, which form a tandem hexameric ring. We characterized the ATP hydrolysis mechanism of CDC-48.1, a p97 homolog of Caenorhabditis elegans. The ATPase activity of the N-terminal AAA domain was very low at physiological temperature, whereas the C-terminal AAA domain showed high ATPase activity in a coordinated fashion with positive cooperativity. The cooperativity and coordination are generated by different mechanisms because a noncooperative mutant still showed the coordination. Interestingly, the growth speed of yeast cells strongly related to the positive cooperativity rather than the ATPase activity itself, suggesting that the positive cooperativity is critical for the essential functions of p97.  相似文献   

11.
Proteins fold up by coordinating the different segments of their polypeptide chain through a network of weak cooperative interactions. Such cooperativity results in unfolding curves that are typically sigmoidal. However, we still do not know what factors modulate folding cooperativity or the minimal amount that ensures folding into specific three-dimensional structures. Here, we address these issues on BBL, a small helical protein that folds in microseconds via a marginally cooperative downhill process (Li, P., Oliva, F. Y., Naganathan, A. N., and Muñoz, V. (2009) Proc. Natl. Acad. Sci. USA. 106, 103–108). Particularly, we explore the effects of salt-induced screening of the electrostatic interactions in BBL at neutral pH and in acid-denatured BBL. Our results show that electrostatic screening stabilizes the native state of the neutral and protonated forms, inducing complete refolding of acid-denatured BBL. Furthermore, without net electrostatic interactions, the unfolding process becomes much less cooperative, as judged by the broadness of the equilibrium unfolding curve and the relaxation rate. Our experiments show that the marginally cooperative unfolding of BBL can still be made twice as broad while the protein retains its ability to fold into the native three-dimensional structure in microseconds. This result demonstrates experimentally that efficient folding does not require cooperativity, confirming predictions from theory and computer simulations and challenging the conventional biochemical paradigm. Furthermore, we conclude that electrostatic interactions are an important factor in determining folding cooperativity. Thus, electrostatic modulation by pH-salt and/or mutagenesis of charged residues emerges as an attractive tool for tuning folding cooperativity.  相似文献   

12.
13.
Maximal rates of ATP hydrolysis catalyzed by F1-ATPase enzymes are known to involve strong positive catalytic site cooperativity. There are three potential catalytic nucleotide-binding sites on F1. Two important and unanswered questions are (i) whether all three potential catalytic sites must interact cooperatively to yield maximal rates of ATP hydrolysis and (ii) whether a cyclical three-site mechanism operates as suggested by several authors. We have studied these two questions here by measuring the ATPase activities of hybrid enzymes containing normal beta-, gamma-, delta-, and epsilon-subunits together with different combinations of mutant and normal alpha-subunits. The mutant alpha-subunits were derived from uncA401, uncA447, and uncA453 mutant E. coli F1-ATPase, in which positive cooperativity between catalytic sites is strongly attenuated by defined mis-sense mutations. Our data show that three normal catalytic sites are required to interact in order to achieve maximal ATPase rates and suggest that a cyclical mechanism does operate. Hybrid enzyme containing one-third mutant alpha-subunit and two-thirds normal alpha-subunits had substantial but submaximal activity, showing that cooperativity between three sites in a noncyclical fashion, or between pairs of sites, can achieve effective catalysis.  相似文献   

14.
M Takahashi  B Blazy  A Baudras 《Biochemistry》1980,19(22):5124-5130
The binding of adenosine cyclic 3',5'-monophosphate (cAMP) and guanosine cyclic 3',5'-monophosphate (cGMP) to the adenosine cyclic 3',5'-monophosphate receptor protein (CRP) from Escherichia coli was investigated by equilibrium dialysis at pH 8.0 and 20 degrees C at different ionic strengths (0.05--0.60 M). Both cAMP and cGMP bind to CRP with a negative cooperativity that is progressively changed to positive as the ionic strength is increased. The binding data were analyzed with an interactive model for two identical sites and site/site interactions with the interaction free energy--RT ln alpha, and the intrinsic binding constant K and cooperativity parameter alpha were computed. Double-label experiments showed that cGMP is strictly competitive with cAMP, and its binding parameters K and alpha are not very different from that for cAMP. Since two binding sites exist for each of the cyclic nucleotides in dimeric CRP and no change in the quaternary structure of the protein is observed on binding the ligands, it is proposed that the cooperativity originates in ligand/ligand interactions. When bound to double-stranded deoxyribonucleic acid (dsDNA), CRP binds cAMP more efficiently, and the cooperativity is positive even in conditions of low ionic strength where it is negative for the free protein. By contrast, cGMP binding properties remained unperturbed in dsDNA-bound CRP. Neither the intrinsic binding constant K nor the cooperativity parameter alpha was found to be very sensitive to changes of pH between 6.0 and 8.0 at 0.2 M ionic strength and 20 degrees C. For these conditions, the intrinsic free energy and entropy of binding of cAMP are delta H degree = -1.7 kcal . mol-1 and delta S degree = 15.6 eu, respectively.  相似文献   

15.
Two-state cooperativity is an important characteristic in protein folding. It is defined by a depletion of states that lie energetically between folded and unfolded conformations. There are different ways to test for two-state cooperativity; however, most of these approaches probe indirect proxies of this depletion. Generalized-ensemble computer simulations allow us to unambiguously identify this transition by a microcanonical analysis on the basis of the density of states. Here, we present a detailed characterization of several helical peptides obtained by coarse-grained simulations. The level of resolution of the coarse-grained model allowed to study realistic structures ranging from small α-helices to a de novo three-helix bundle without biasing the force field toward the native state of the protein. By linking thermodynamic and structural features, we are able to show that whereas short α-helices exhibit two-state cooperativity, the type of transition changes for longer chain lengths because the chain forms multiple helix nucleation sites, stabilizing a significant population of intermediate states. The helix bundle exhibits signs of two-state cooperativity owing to favorable helix-helix interactions, as predicted from theoretical models. A detailed analysis of secondary and tertiary structure formation fits well into the framework of several folding mechanisms and confirms features that up to now have been observed only in lattice models.  相似文献   

16.
Genome duplication requires not only unwinding of the template but also the displacement of proteins bound to the template, a function performed by replicative helicases located at the fork. However, accessory helicases are also needed since the replicative helicase stalls occasionally at nucleoprotein complexes. In Escherichia coli, the primary and accessory helicases DnaB and Rep translocate along the lagging and leading strand templates, respectively, interact physically and also display cooperativity in the unwinding of model forked DNA substrates. We demonstrate here that this cooperativity is displayed only by Rep and not by other tested helicases. ssDNA must be exposed on the leading strand template to elicit this cooperativity, indicating that forks blocked at protein-DNA complexes contain ssDNA ahead of the leading strand polymerase. However, stable Rep-DnaB complexes can form on linear as well as branched DNA, indicating that Rep has the capacity to interact with ssDNA on either the leading or the lagging strand template at forks. Inhibition of Rep binding to the lagging strand template by competition with SSB might therefore be critical in targeting accessory helicases to the leading strand template, indicating an important role for replisome architecture in promoting accessory helicase function at blocked replisomes.  相似文献   

17.
There are two isozymes of the Na,K-ATPase, which can be purified separately from rat renal medulla and brainstem axolemma. Here the basic kinetic properties of the two Na,K-ATPases have been compared in conditions permitting enzyme turnover. The two isozymes are half-maximally activated at different concentrations of ATP, the axolemma Na,K-ATPase having the higher affinity. They are half-maximally activated by Na+ and K+ at very similar concentrations but show differences in cooperativity toward Na+. The affinities of both isozymes for ATP and Na+ are affected in a qualitatively similar way by variations in the concentration of K+. Both isozymes transport 22Na+ and 42K+ in a ratio close to 3:2 in artificial lipid vesicles. The two isozymes differ most strikingly in the inhibition of ATPase activity by ouabain. The axolemma Na,K-ATPase has a high affinity for ouabain with positive cooperativity, while the renal medulla Na,K-ATPase has a lower affinity with negative cooperativity. It is likely that the cooperativity differences are due to kinetic effects, reflecting different rates of conformation transitions during enzyme turnover. The functional result of the contrasting cooperativities is that the difference in sensitivity to ouabain is amplified.  相似文献   

18.
Human beings are continuously exposed to fungi, yet they rarely get fungal diseases. The delicate balance between the host and these otherwise harmless pathogens may turn into a parasitic relationship, resulting in the development of severe infections. The ability to reversibly switch between unicellular and filamentous forms, all of which can be found in infected tissues, is thought to be important for virulence. Efficient responses to the different forms of fungi require different mechanisms of immunity. Dendritic cells (DC) are uniquely able at decoding the fungus-associated information and translating it in qualitatively different T helper (Th) immune responses, in vitro and in vivo. Myeloid DC phagocytosed yeasts and hyphae of Candida albicans and conidia and hyphae of Aspergillus fumigatus, both in vitro and in vivo. Phagocytosis occurred through distinct phagocytic morphologies, involving the engagement and cooperativity of distinct recognition receptors. However, receptor engagement and cooperativity were greatly modified by opsonization. The engagement of distinct receptors translated into disparate downstream signaling events, ultimately affecting cytokine production and costimulation. In vivo studies confirmed that the choice of receptor and mode of entry of fungi into DC was responsible for Th polarization and patterns of susceptibility or resistance to infection. Adoptive transfer of different types of DC activated protective, nonprotective and regulatory T cells, ultimately affecting the outcome of infection. The conclusions are that the selective exploitation of receptors and mode of entry into DC may determine the full range of host's immune relationships with fungi and have important implications in the design of vaccine-based strategies.  相似文献   

19.
In a multimeric receptor protein, the binding of a ligand can modulate the binding of a succeeding ligand. This phenomenon, called cooperativity, is caused by the interaction of the receptor subunits. By using a complex Markovian model and a set of parameters determined previously, we analyzed how the successive binding of four ligands leads to a complex cooperative interaction of the subunits in homotetrameric HCN2 pacemaker channels. The individual steps in the model were characterized by Gibbs free energies for the equilibria and activation energies, specifying the affinity of the binding sites and the transition rates, respectively. Moreover, cooperative free energies were calculated for each binding step in both the closed and the open channel. We show that the cooperativity sequence positive-negative-positive determined for the binding affinity is generated by the combined effect of very different cooperativity sequences determined for the binding and unbinding rates, which are negative-negative-positive and no-negative-no, respectively. It is concluded that in the ligand-induced activation of HCN2 channels, the sequence of cooperativity based on the binding affinity is caused by two even qualitatively different sequences of cooperativity that are based on the rates of ligand binding and unbinding.  相似文献   

20.
A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号