首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulatory T cells (Treg) maintain peripheral tolerance and play a critical role in the control of the immune response in infection, tumor defense, organ transplantation and allergy. CD4(+)CD25(high) Treg suppress the proliferation and cytokine production of CD4(+)CD25(-) responder T cells. The suppression requires cell-cell-contact and/or production of inhibitory cytokines like IL-10 or TGF-β. The current knowledge about the regulation of Treg suppressive function is limited. Toll-like receptors (TLR) are widely expressed in the innate immune system. They recognize conserved microbial ligands such as lipopolysaccharide, bacterial lipopeptides or viral and bacterial RNA and DNA. TLR play an essential role in innate immune responses and in the initiation of adaptive immune responses. However, certain TLR are also expressed in T lymphocytes, and the respective ligands can directly modulate T cell function. TLR2, TLR3, TLR5 and TLR9 act as costimulatory receptors to enhance proliferation and/or cytokine production of T-cell receptor-stimulated T lymphocytes. In addition, TLR2, TLR5 and TLR8 modulate the suppressive activity of naturally occurring CD4(+)CD25(high) Treg. The direct responsiveness of T lymphocytes to TLR ligands offers new perspectives for the immunotherapeutic manipulation of T cell responses. In this article we will discuss the regulation of Treg and other T cell subsets by TLR ligands.  相似文献   

2.
Trypansoma cruzi affects immune responsiveness in mammalian hosts. Studies with patients and infected animals have defined some of the immunological dysfunctions but not the underlying mechanisms. Recent work using an in vitro model system of T. cruzi-human lymphocyte interactions has made it possible to uncover specific alterations in human lymphocyte activation induced by this parasite. Felipe Kierzenbaum and Marcelo Sztein discuss recent advances in our understanding of the processes that lead to impaired human lymphocyte function and that might be involved in the immunosuppression seen in the acute phase of Chagas disease.  相似文献   

3.
Mechanisms underlying insect chill-coma   总被引:1,自引:0,他引:1  
At their critical thermal minimum (CTmin) insects enter chill-coma, a reversible state where neuromuscular transmission and movement cease. The physiological mechanisms responsible for the insect CTmin remain poorly understood despite the regular use of chill-coma onset and recovery as a means to assess evolved or acquired variation in low temperature tolerance. In this review, we summarize the use of chill-coma as a metric of thermal tolerance to date, and synthesise current knowledge on the nature and plasticity of lower thermal limits to present probable physiological mechanisms of cold-induced failure. Chill-coma is likely to be driven by an inability to maintain ionic homeostasis through the effects of temperature on ion-motive ATPases, ion channel gating mechanisms, and/or the lipid membrane, leading to a loss of nerve and muscle excitability.  相似文献   

4.
5.
《Trends in microbiology》2023,31(9):903-915
Helicobacter pylori is a paradigm of chronic bacterial infection and is associated with peptic ulceration and malignancies. H. pylori uses specific masking mechanisms to avoid canonical ligands from activating Toll-like receptors (TLRs), such as lipopolysaccharide (LPS) modification and specific flagellin sequences that are not detected by TLR4 and TLR5, respectively. Thus, it was believed for a long time that H. pylori evades TLR recognition as a crucial strategy for immune escape and bacterial persistence. However, recent data indicate that multiple TLRs are activated by H. pylori and play a role in the pathology. Remarkably, H. pylori LPS, modified through changes in acylation and phosphorylation, is mainly sensed by other TLRs (TLR2 and TLR10) and induces both pro- and anti-inflammatory responses. In addition, two structural components of the cag pathogenicity island-encoded type IV secretion system (T4SS), CagL and CagY, were shown to contain TLR5-activating domains. These domains stimulate TLR5 and enhance immunity, while LPS-driven TLR10 signaling predominantly activates anti-inflammatory reactions. Here, we discuss the specific roles of these TLRs and masking mechanisms during infection. Masking of typical TLR ligands combined with evolutionary shifting to other TLRs is unique for H. pylori and has not yet been described for any other species in the bacterial kingdom. Finally, we highlight the unmasked T4SS-driven activation of TLR9 by H. pylori, which mainly triggers anti-inflammatory responses.  相似文献   

6.
We determined the mechanisms underlying host selection by adults of the seabuckthorn carpenterworm, Holcocerus hippophaecolus Hua, Chou, Fang et Chen. Four sea buckthorn (Hippophae rhamnoides L.) subspecies (varieties) with different degrees of resistance to H. hippophaecolus were chosen for artificial insect infection in cages. The results showed that olfactory and visual cues are very important for the selection of host plants by H. hippophaecolus, but that olfactory stimuli play a more vital role in this process. The relative abundance of branches and leaves had no effect on the likelihood that adults landed on plants from four subspecies (varieties), but did influence landing rates within the same subspecies (varieties). When considering only the most resistant sea buckthorn subspecies (varieties), the presence of luxuriant branches and leaves led to lower landing rates. These results provide a theoretical basis for the understanding of H. hippophaecolus damage to sea buckthorn and the means to implement effective measures of control.  相似文献   

7.
8.
The neurotoxic effects of activated microglia in neurodegenerative diseases are well established. We recently provided evidence that chromogranin A (CGA), a multifunctional protein localized in dystrophic neurites and in senile plaques, induces an activated phenotype and secretion of neurotoxins by rat microglia in culture. In the present study, we focused on the mechanisms underlying neuronal degeneration triggered by CGA-activated microglia. We found that neuronal death exhibits apoptotic features, characterized by the externalization of phosphatidylserine and the fragmentation of DNA. Microglial neurotoxins markedly stimulate the phosphorylation and activity of neuronal p38 mitogen-activated protein kinase and provoke the release of mitochondrial cytochrome c, which precedes apoptosis. Inhibition of p38 kinase with SB 203580 partially protects neurons from death induced by CGA-activated microglia. Furthermore, neurons are also protected by Fas-Fc, which antagonizes the interactions between the death receptor Fas and its ligand FasL and by cell-permeable peptides that inhibit caspases 8 and 3. Thus, CGA triggers the release of microglial neurotoxins that mobilize several death-signaling pathways in neurons. Our results further support the idea that CGA, which is up-regulated in many neuropathologies, represents a potent endogeneous inflammatory factor possibly responsible for neuronal degeneration.  相似文献   

9.
We have used delayed-type hypersensitivity (DTH) responses to probe the mechanisms of drug-induced cardiac allograft acceptance in mice. DBA/2-->C57BL/6 cardiac allograft recipients treated transiently with gallium nitrate accept their grafts for >90 days and fail to display DBA/2-reactive DTH responses. These DTH responses are restored when anti-TGF-beta Abs are included at the challenge site, and cell depletion studies showed that this DTH inhibition is mediated by CD4+ cells. Real-time PCR analysis revealed that allograft acceptor mice produce no more than background levels of TGF-beta mRNA at DTH challenge sites. This suggests that DTH regulation in allograft acceptor mice may involve TGF-beta activation, rather than TGF-beta production. The protease, plasmin, can activate TGF-beta, and activated T cells can express a receptor for the plasmin-producing enzyme urokinase-type plasminogen activator (uPA), and can also produce both uPA and tissue-type plasminogen activator (tPA). We observed that Abs to tPA or uPA can replace anti-TGF-beta mAb for the restoration of donor-reactive DTH responses in allograft acceptor mice. Histologic analysis revealed that accepted cardiac allografts express uPA, tPA, and active TGF-beta, whereas accepted cardiac isografts express only tPA, but not uPA or activated TGF-beta. These data demonstrate that local tPA and uPA contribute to DTH regulation in allograft acceptor mice and suggest that these elements of the fibrinolytic pathway are used to control donor-reactive cell-mediated immunity in allograft acceptor mice.  相似文献   

10.
Freeze tolerance – the ability to survive internal ice formation – has evolved repeatedly in insects, facilitating survival in environments with low temperatures and/or high risk of freezing. Surviving internal ice formation poses several challenges because freezing can cause cellular dehydration and mechanical damage, and restricts the opportunity to metabolise and respond to environmental challenges. While freeze‐tolerant insects accumulate many potentially protective molecules, there is no apparent ‘magic bullet’ – a molecule or class of molecules that appears to be necessary or sufficient to support this cold‐tolerance strategy. In addition, the mechanisms underlying freeze tolerance have been minimally explored. Herein, we frame freeze tolerance as the ability to survive a process: freeze‐tolerant insects must withstand the challenges associated with cooling (low temperatures), freezing (internal ice formation), and thawing. To do so, we hypothesise that freeze‐tolerant insects control the quality and quantity of ice, prevent or repair damage to cells and macromolecules, manage biochemical processes while frozen/thawing, and restore physiological processes post‐thaw. Many of the molecules that can facilitate freeze tolerance are also accumulated by other cold‐ and desiccation‐tolerant insects. We suggest that, when freezing offered a physiological advantage, freeze tolerance evolved in insects that were already adapted to low temperatures or desiccation, or in insects that could withstand small amounts of internal ice formation. Although freeze tolerance is a complex cold‐tolerance strategy that has evolved multiple times, we suggest that a process‐focused approach (in combination with appropriate techniques and model organisms) will facilitate hypothesis‐driven research to understand better how insects survive internal ice formation.  相似文献   

11.
12.
Tumor cells can evade the immune system through several mechanisms, one of which is to block DC maturation. It has been suggested that signaling via Toll-like receptors (TLR) may be involved in the induction of prophylactic anti-cancer immunity and in the treatment of established tumors. In the present study we found that high numbers of tumor cells interfere with BMDC activation induced by the TLR ligands LPS and poly IC. Tumor cells blocked TLR3- and TLR4-mediated induction of MHCII and the co-stimulatory molecules CD40 and CD86, as well as the cytokines IL-12, TNF-α and IL-6. Importantly, tumor cells induced inhibitory molecules (B7-DC, B7-H1 and CD80) on spleen DC in vivo and on BMDC, even in the presence of TLR ligands. Moreover, after a long exposure with tumor cells, purified BMDC were unable to respond to a second challenge with TLR ligands. The failure of tumor exposed-BMDC to express co-stimulatory molecules and cytokines in the presence of TLR ligands has implications for the future development of DC-based cancer immune therapies using TLR ligands as adjuvants for the activation of DC.  相似文献   

13.
14.
L C Wang  M L Jourdan  T F Lee 《Life sciences》1989,44(14):927-934
Previous studies showed that acute treatment with aminophylline (AMPY) significantly elevated maximum thermogenesis and improved cold tolerance in rats and man in severe cold. However, the exact mechanism by which AMPY enhances thermogenesis was unknown. Rats receiving enprofylline (ENPRO) (1.5 and 15 mg/kg, i.p.), a selective phosphodiesterase inhibitor, failed to show enhanced thermogenesis. In contrast, treatment with a selective adenosine receptor antagonist, 8-phenyltheophylline(8-PT; 2.5 to 10 mg/kg, i.p.), significantly increased (p less than 0.05) thermogenesis and cold tolerance. However, the maximal thermogenic effect by optimal dose of 8-PT (5 mg/kg) was significantly lower than that with optimal dose of AMPY (18.7 mg/kg, i.p.); the deficit could be eradicated by combining optimal 8-PT dose with a low dose of AMPY (1.25 mg/kg), but not with ENPRO. These results indicate that the thermogenic effect of AMPY is not by inhibition of phosphodiesterase but at least partially by antagonism of adenosine receptors. It is also apparent that older mechanisms in addition to adenosine antagonism are also involved in AMPY's thermogenic action.  相似文献   

15.
16.
McFarland (1969) suggested two mechanisms whereby a switch could occur from one activity to another: ‘competition’, which he depicted as a gradual increase in the causal-factor strength (CFS) of activity 2, and ‘disinhibition’, which he depticted as a sudden decrease in the CFS of activity 1. We postulate two further mechanisms: ‘satiation’, depicted as a gradual decrease in the CFS of activity 1, and ‘inhibition’, depicted as a sudden increase in the CFS of activity 2. We suggest that disinhibition may be a less common mechanism of behavioural switching than is usually supposed, and describe three experiments suggesting that eat/drink and drink/eat switches in the rat occur by competition and/or satiation rather than by disinhibition and/or inhibition. In experiment 1, varying degrees of water deprivation were found to affect the timing of eat/drink switches in food-deprived rats; in experiment 2, varying rates of food availability were found to affect the timing of drink/eat switches in water-deprived rats; in experiment 3, drink/eat switches were delayed by allowing rats to ‘drink’ air instead of water.  相似文献   

17.
Lambs show considerable genetic variation in faecal egg count following natural, predominantly Ostertagia circumcinta infection. This genetic variation is acquired and not innate. Worm length is positively associated with worm fecundity. The genetic variation in faecal egg count is a consequence of genetic variation in worm length and hence worm fecundity, and not of genetic variation in worm burdens. In contrast to lambs, mature sheep may be able to regulate both fecundity and worm numbers. In lambs, three factors account for the majority of the variation in worm length: the strength of the local IgA response against fourth-stage larvae, the specificity of this response against four molecules in particular, and the density-dependent influence of worm number.  相似文献   

18.
A fundamental yet poorly understood aspect of gene regulation in eukaryotic organisms is the mechanisms that control allelic exclusion and mutually exclusive gene expression. In the malaria parasite Plasmodium falciparum, this process regulates expression of the var gene family--a large, hypervariable repertoire of genes that are responsible for the ability of the parasite to evade the host immune system and for pathogenesis of the disease. A central problem in understanding this process concerns the mechanisms that limit expression to a single gene at a time. Here, we describe results that provide information on the mechanisms that control silencing and single gene expression and differentiate between several models that have recently been proposed. The results provide the first evidence, to our knowledge, supporting the existence of a postulated var-specific, subnuclear expression site and also reinforce the conclusion that var gene regulation is based on cooperative interactions between the two promoters of each var gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号