首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High blood pressure (HBP) is an important risk factor for cardiac, renal, and vascular dysfunction. Excess inflammation is the major pathogenic mechanism for HBP-induced target organ damage (TOD). N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a tetrapeptide specifically degraded by angiotensin converting enzyme (ACE), reduces inflammation, fibrosis, and TOD induced by HBP. Our hypothesis is that Ac-SDKP exerts its anti-inflammatory effects by inhibiting: 1) differentiation of bone marrow stem cells (BMSC) to macrophages, 2) activation and migration of macrophages, and 3) release of the proinflammatory cytokine TNF-alpha by activated macrophages. BMSC were freshly isolated and cultured in macrophage growth medium. Differentiation of murine BMSC to macrophages was analyzed by flow cytometry using F4/80 as a marker of macrophage maturation. Macrophage migration was measured in a modified Boyden chamber. TNF-alpha release by activated macrophages in culture was measured by ELISA. Myocardial macrophage activation in mice with ANG II-induced hypertension was studied by Western blotting of Mac-2 (galectin-3) protein. Interstitial collagen deposition was measured by picrosirius red staining. We found that Ac-SDKP (10 nM) reduced differentiation of cultured BMSC to mature macrophages by 24.5% [F4/80 positivity: 14.09 +/- 1.06 mean fluorescent intensity for vehicle and 10.63 +/- 0.35 for Ac-SDKP; P < 0.05]. Ac-SDKP also decreased galectin-3 and macrophage colony-stimulating factor-dependent macrophage migration. In addition, Ac-SDKP decreased secretion of TNF-alpha by macrophages stimulated with bacterial LPS. In mice with ANG II-induced hypertension, Ac-SDKP reduced expression of galectin-3, a protein produced by infiltrating macrophages in the myocardium, and interstitial collagen deposition. In conclusion, this study demonstrates that part of the anti-inflammatory effect of Ac-SDKP is due to its direct effect on BMSC and macrophage, inhibiting their differentiation, activation, and cytokine release. These effects explain some of the anti-inflammatory and antifibrotic properties of Ac-SDKP in hypertension.  相似文献   

2.
We have shown that the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) inhibited endothelin-1 (ET-1)-induced cell proliferation and collagen synthesis in cultured rat cardiac fibroblasts (CFs) and reduced left ventricle collagen deposition in rats with aldosterone (salt)- and ANG II-induced hypertension. However, it is not known whether these effects are mediated by receptor binding sites specific for Ac-SDKP. We hypothesized that Ac-SDKP exerts antifibrotic effects by binding to specific receptor sites in cultured rat CFs, which mediate the inhibitory effects of Ac-SDKP on ET-1-stimulated collagen synthesis. Ac-SDKP binding sites in rat CFs and hearts were characterized by a specific radioligand, (125)I-labeled 3-(p-hydroxyphenyl)-propionic acid (or desaminotyrosine) (Hpp)-Aca-SDKP, a biologically active analog of Ac-SDKP. (125)I-labeled Hpp-Aca-SDKP bound to rat CFs and fractionated membranes with similar affinities and specificity in a concentration- and time-dependent fashion. Scatchard plot analyses revealed a single class of high-affinity Hpp-Aca-SDKP binding sites (maximal binding: 1,704 +/- 198 fmol/mg protein; dissociation constant: 3.3 +/- 0.6 nM). (125)I-labeled Hpp-Aca-SDKP binding in CFs was displaced by unlabeled native peptide Ac-SDKP (inhibition constant: 0.69 +/- 0.15 nM) and the analog Hpp-Aca-SDKP (inhibition constant: 10.4 +/- 0.2 nM) but not the unrelated peptide ANG II or ET-1 (10 microM). In vitro, both Ac-SDKP and Hpp-Aca-SDKP inhibited ET-1-stimulated collagen synthesis in CFs in a dose-dependent fashion, reaching a maximal effect at 1 nM (control: 7.5 +/- 0.4, ET-1: 19.9 +/- 1.2, ET-1+SDKP: 7.7 +/- 0.4, ET-1+Hpp-Aca-SDKP: 9.7 +/- 0.1 microg/mg protein; P < 0.001). Ac-SDKP also significantly attenuated ET-1-induced increases in intracellular calcium and MAPK ERK1/2 phosphorylation in CFs. In the rat heart, in vitro autoradiography revealed specific (125)I-labeled Hpp-Aca-SDKP binding throughout the myocardium, primarily interstitially. We believe that these results demonstrate for the first time that Hpp-Aca-SDKP is a functional ligand specific for Ac-SDKP receptor binding sites and that both Ac-SDKP and Hpp-Aca-SDKP exert antifibrotic effects by binding to Ac-SDKP receptors in rat CFs.  相似文献   

3.
Smad7 is an inhibitory Smad and plays a protective role in obstructive and diabetic kidney disease. However, the role and mechanisms of Smad7 in hypertensive nephropathy remains unexplored. Thus, the aim of this study was to investigate the role and regulatory mechanisms of Smad7 in ANG II-induced hypertensive nephropathy. Smad7 gene knockout (KO) and wild-type (WT) mice received a subcutaneous infusion of ANG II or control saline for 4 weeks via osmotic mini-pumps. ANG II infusion produced equivalent hypertension in Smad7 KO and WT mice; however, Smad7 KO mice exhibited more severe renal functional injury as shown by increased proteinuria and reduced renal function (both p<0.05) when compared with Smad7 WT mice. Enhanced renal injury in Smad7 KO mice was associated with more progressive renal fibrosis with elevated TGF-β/Smad3 signalling. Smad7 KO mice also showed more profound renal inflammation including increased macrophage infiltration, enhanced IL-1β and TNF-α expression, and a marked activation of NF-κB signaling (all p<0.01). Further studies revealed that enhanced ANG II-mediated renal inflammation and fibrosis in Smad7 KO mice were also associated with up-regulation of Sp1 but downregulation of miR-29b expression. Taken together, the present study revealed that enhanced Sp1-TGF-β1/Smad3-NF-κB signaling and loss of miR-29 may be mechanisms by which deletion of Smad7 promotes ANG II-mediated renal fibrosis and inflammation. Thus, Smad7 may play a protective role in ANG II-induced hypertensive kidney disease.  相似文献   

4.
In addition to well-documented vascular growth-promoting effects, ANG II exerts proapoptotic effects that are poorly understood. IGF-1 is a potent survival factor for human vascular smooth muscle cells (hVSMC), and its antiapoptotic effects are mediated via the IGF-1 receptor (IGF-1R) through a signaling pathway involving phosphatidylinositol 3-kinase and Akt. We hypothesized that there would be cross talk between ANG II proapoptotic effects and IGF-1 survival effects in hVSMC. To investigate ANG II-induced apoptosis and the potential involvement of IGF-1, we exposed quiescent and nonquiescent hVSMC to ANG II. ANG II induced apoptosis only in nonquiescent cells but stimulated hypertrophy in quiescent cells. ANG II-induced apoptosis was characterized by marked inhibition of Akt phosphorylation and stimulation of membrane Fas ligand (FasL) expression, caspase-8 activation, and a reduction in soluble FasL expression. Adenovirally mediated overexpression of Akt rescued hVSMC from ANG II-induced apoptosis. IGF-1R activation increased Akt phosphorylation and soluble FasL expression, and these effects were completely blocked by coincubating hVSMC with ANG II. In conclusion, ANG II-induced apoptosis of hVSMC is characterized by marked inhibition of Akt phosphorylation and stimulation of an extrinsic cell death signaling pathway via upregulation of membrane FasL expression, caspase-8 activation, and a reduction in soluble FasL expression. Furthermore, ANG II antagonizes the antiapoptotic effect of IGF-1 by blocking its ability to increase Akt phosphorylation and soluble FasL. These findings provide novel insights into ANG II-induced apoptotic signaling and have significant implication for understanding ANG II-induced remodeling in hypertension and atherosclerosis.  相似文献   

5.
In the present study, we tested the hypothesis that ANG II causes a greater vasoconstriction in obese Zucker rats, a model of type 2 diabetes, with mild hypertension. Measurement of isometric tension in isolated aortic rings with intact endothelium revealed a modest but not significantly greater ANG II-induced contraction in obese than lean rats. Removal of endothelium or inhibition of nitric oxide (NO) synthase by N(G)-nitro-L-arginine methyl ester (L-NAME) enhanced 1) ANG II-induced contraction in both lean and obese rats, being significantly greater in obese rats (E(max) g/g tissue, denuded: lean 572 +/- 40 vs. obese 664 +/- 16; L-NAME: lean 535 +/- 14 vs. obese 818 +/- 23) and 2) ANG II sensitivity in obese compared with lean rats, as revealed by the pD(2) values. Endothelin-1 and KCl elicited similar contractions in the aortic rings of lean and obese rats. ACh, a NO-dependent relaxing hormone, produced greater relaxation in the aortic rings of obese than lean rats, whereas sodium nitroprusside, an NO donor, elicited similar relaxations in both rat strains. The expression of the ANG type 1 (AT(1)) receptor protein and mRNA in the endothelium-intact aorta was significantly greater in obese than lean rats, whereas the endothelium-denuded rings expressed modest but not significantly greater levels of AT(1) receptors in obese than lean rats. The endothelial NO synthase protein and mRNA expression levels were higher in the aorta of obese than lean animals. We conclude that, although ANG II produces greater vasoconstriction in obese rat aortic rings, enhanced endothelial AT(1) receptor-mediated NO production appears to counteract the increased ANG II-induced vasoconstriction, suggesting that arterial AT(1) receptor may not be a contributing factor to hypertension in this model of obesity.  相似文献   

6.
Angiotensin II (Ang II) is involved in the development of cardiovascular disease and vascular remodeling. In this study, we demonstrate that treatment of human adipose tissue-derived mesenchymal stem cells (hADSCs) with Ang II increased the expression of smooth muscle-specific genes, including alpha-smooth muscle actin (alpha-SMA), calponin, h-caldesmon, and smooth muscle myosin heavy chain (SM-MHC), and also elicited the secretion of transforming growth factor-beta1 (TGF-beta1) and delayed phosphorylation of Smad2. The Ang II-induced expression of alpha-SMA and delayed phosphorylation of Smad2 were blocked by pretreatment of the cells with a TGF-beta type I receptor kinase inhibitor, SB-431542, small interference RNA-mediated depletion of endogenous Smad2, and adenoviral expression of Smad7. Furthermore, the Ang II-induced TGF-beta1 secretion, alpha-SMA expression, and delayed phosphorylation of Smad2 in hADSCs were abrogated by the MEK inhibitor U0126, suggesting a pivotal role of MEK/ERK pathway in the Ang II-induced activation of TGF-beta1-Smad2 signaling pathway. The smooth muscle-like cells which were differentiated from hADSCs by Ang II treatment exhibited contraction in response to 60mM KCl. These results suggest that Ang II induces differentiation of hADSCs to contractile smooth muscle-like cells through ERK-dependent activation of the autocrine TGF-beta1-Smad2 crosstalk pathway.  相似文献   

7.
We previously found that ANG II infusion into rats causes iron deposition in the kidney and heart, which may have a role in the regulation of profibrotic gene expression and tissue fibrosis. In the present study, we have investigated whether ANG II can also induce iron accumulation in the liver. Prussian blue staining detected frequent iron deposition in the interstitium of the liver of rats treated with pressor dose ANG II for 7 days, whereas iron deposition was absent in the livers of control rats. Immunohistochemical and histological analyses showed that some iron-positive nonparenchymal cells were positive for ferritin and heme oxygenase-1 (HO-1) protein and TGF-beta1 mRNA and were judged to be monocytes/macrophages. It was shown that ANG II infusion caused about a fourfold increase in ferritin and HO-1 protein expression by Western blot analysis and about a twofold increase in TGF-beta1 mRNA expression by Northern blot analysis, which were both suppressed by treating ANG II-infused rats with losartan and deferoxamine. In addition, mild interstitial fibrosis was observed in the liver of rats that had been treated with pressor dose ANG II for 7 days or with nonpressor dose ANG II for 30 days, the latter of which also caused loss of hepatocytes and intrahepatic hemorrhage in the liver. Taken together, our data suggest that ANG II infusion induces aberrant iron homeostasis in the liver, which may have a role in the ANG II-induced upregulation of profibrotic gene expression in the liver.  相似文献   

8.
The aim of the present study was to investigate the role of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) and its degrading enzyme dimethylarginine dimethylaminohydrolase (DDAH) in angiotensin II (ANG II)-induced hypertension and target organ damage in mice. Mice transgenic for the human DDAH1 gene (TG) and wild-type (WT) mice (each, n = 28) were treated with 1.0 microg kg(-1) min(-1) ANG II, 3.0 microg kg(-1) min(-1) ANG II, or phosphate-buffered saline over 4 wk via osmotic minipumps. Blood pressure, as measured by tail cuff, was elevated to the same degree in TG and WT mice. Plasma levels of ADMA were lower in TG than WT mice and were not affected after 4 wk by either dose of ANG II in both TG and WT animals. Oxidative stress within the wall of the aorta, measured by fluorescence microscopy using the dye dihydroethidium, was significantly reduced in TG mice. ANG II-induced glomerulosclerosis was similar between WT and TG mice, whereas renal interstitial fibrosis was significantly reduced in TG compared with WT animals. Renal mRNA expression of protein arginine methyltransferase (PRMT)1 and DDAH2 increased during the infusion of ANG II, whereas PRMT3 and endogenous mouse DDAH1 expression remained unaltered. Chronic infusion of ANG II in mice has no effect on the plasma levels of ADMA after 4 wk. However, an overexpression of DDAH1 alleviates ANG II-induced renal interstitial fibrosis and vascular oxidative stress, suggesting a blood pressure-independent effect of ADMA on ANG II-induced target organ damage.  相似文献   

9.
Heat shock (HS) proteins (Hsps) function in tissue protection through their chaperone activity and by interacting with cell signaling pathways to suppress apoptosis. Here, we investigated the effect of HS treatment on the nuclear factor (NF)-kappaB signaling pathway in the angiotensin II (ANG II) model of inflammation. Male Sprague-Dawley rats were divided into sham and HS-, ANG II-, and HS + ANG II-treated groups. HS treatment was administered 24 h before the initiation of ANG II infusion. HS treatment (42 degrees C for 15 min) decreased 7-day ANG II-induced hypertension from 191 +/- 4 to 147 +/- 3 mmHg (P < 0.01). Histological staining of hearts showed that HS treatment reduced ANG II-induced leukocyte infiltration, perivascular and interstitial inflammation, and fibrosis. Heart NF-kappaB nuclear translocation and activity, examined by Western blot analysis and electrophoretic mobility shift assay, was suppressed by HS treatment. HS treatment depleted IkappaB kinase-alpha (IKK-alpha) and phosphorylated IKK-alpha and suppressed the depletion of IkappaB-alpha and the accumulation of phosphorylated IkappaB-alpha. HS treatment blocked ANG II induced expression of IL-6 and ICAM-1 in the heart. ANG II and HS treatment induced high-level expression of Hsp27 and Hsp70 and their phosphorylation. Phosphorylated isoforms of Hsp27 and Hsp70 may play an important role in protecting the heart against ANG II-induced inflammation.  相似文献   

10.
Angiotensin II (ANG II) is a powerful activator of mitogen-activated protein (MAP) kinase cascades in cardiovascular tissues through a redox-sensitive mechanism. Nitric oxide (NO) is considered to antagonize the vasoconstrictive and proarteriosclerotic actions of ANG II. However, the role of endogenous NO in ANG II-induced redox-sensitive signal transduction is not yet clear. In this study using catheterized, conscious rats, we found that acute intravenous administration of N(G)-nitro-L-arginine methyl ester (L-NAME; 5 mg/kg) enhanced phosphorylation of aortic MAP kinases extracellular signal regulated kinase (ERK) 1/2 and p38, which were suppressed only partially by a superoxide dismutase mimetic (Tempol), whereas ANG II-induced MAP kinase phosphorylation was markedly suppressed by Tempol. FK409, a NO donor, had little effect on vascular MAP kinase phosphorylation. On the other hand, acute exposure to a vasoconstrictor dose of ANG II (200 ng x kg(-1) x min(-1) iv) failed to enhance phosphorylation of aortic MAP kinases in the chronically L-NAME-treated rats, whereas the vasoconstrictor effect of ANG II was not affected by L-NAME treatment. Furthermore, three different inhibitors of NO synthase suppressed, in a dose-dependent manner, ANG II-induced MAP kinase phosphorylation in rat vascular smooth muscle cells, which was closely linked to superoxide generation in cells. These results indicate the involvement of endogenous NO synthase in ANG II-induced signaling pathways, leading to activation of MAP kinase, and that NO may have dual effects on the vascular MAP kinase activation associated with redox sensitivity.  相似文献   

11.
We examined the arterial phenotype of mice lacking alpha(1)-integrin (alpha(1)(-/-)) at baseline and after 4 wk of ANG II or norepinephrine (NE) administration. Arterial mechanical properties were determined in the carotid artery (CA). Integrin expression, MAPK kinases, and focal adhesion kinase (FAK) were assessed in the aorta. No change in arterial pressure was observed in alpha(1)(-/-) mice. Elastic modulus-wall stress curves were similar in alpha(1)(-/-) and alpha(1)(+/+) animals, indicating no change in arterial stiffness. The rupture pressure was lower in alpha(1)(-/-) mice, demonstrating decreased mechanical strength. Lack of alpha(1)-integrin was accompanied by an increase in beta(1)-, alpha(v)-, and alpha(5)-integrins but no change in alpha(2)-integrin. ANG II increased medial cross-sectional area of the CA in alpha(1)(+/+), but not alpha(1)(-/-), mice, whereas equivalent pressor doses of NE did not produce a significant increase in either group. In alpha(1)(+/+) mice, ANG II induced alpha(1)-integrin expression and smooth muscle cell (SMC) hypertrophy in the CA in association with increased aortic expression of alpha-smooth muscle actin and smooth muscle myosin heavy chain and phosphorylation of ERK1/2, p38 MAPK, and FAK. ANG II did not induce SMC hypertrophy or phosphorylation of p38 MAPK and FAK in alpha(1)(-/-) mice. A functional anti-alpha(1)-integrin antibody inhibited in vitro the ANG II-induced phosphorylation of FAK and p38 MAPK. In conclusion, alpha(1)(-/-) mice exhibit a reduced mechanical strength at baseline and a lack of ANG II-induced SMC hypertrophy. These results emphasize the importance of alpha(1)beta(1)-integrin in p38 MAPK and FAK phosphorylation during vascular hypertrophy in response to ANG II.  相似文献   

12.
This study determines that vascular smooth muscle cell (VSMC) signaling through extracellular signal-regulated kinase (ERK) 1/2-mitogen-activated protein (MAP) kinase, alphavbeta(3)-integrin, and transforming growth factor (TGF)-beta1 dictates collagen type I network induction in mesenteric resistance arteries (MRA) from type 1 diabetic (streptozotocin) or hypertensive (HT; ANG II) mice. Isolated MRA were subjected to a pressure-passive-diameter relationship. To delineate cell types and mechanisms, cultured VSMC were prepared from MRA and stimulated with ANG II (100 nM) and high glucose (HG, 22 mM). Pressure-passive-diameter relationship reduction was associated with increased collagen type I deposition in MRA from HT and diabetic mice compared with control. Treatment of HT and diabetic mice with neutralizing TGF-beta1 antibody reduced MRA stiffness and collagen type I deposition. Cultured VSMC stimulated with HG or ANG II for 5 min increased ERK1/2-MAP kinase phosphorylation, whereas a 48-h stimulation induced latent TGF-beta1, alphavbeta(3)-integrin, and collagen type 1 release in the conditioned media. TGF-beta1 bioactivity and Smad2 phosphorylation were alphavbeta(3)-integrin-dependent, since beta(3)-integrin antibody and alphavbeta(3)-integrin inhibitor (SB-223245, 10 microM) significantly prevented TGF-beta1 bioactivity and Smad2 phosphorylation. Pretreatment of VSMC with ERK1/2-MAP kinase inhibitor (U-0126, 1 microM) reduced alphavbeta(3)-integrin, TGF-beta1, and collagen type 1 content. Additionally, alphavbeta(3)-integrin antibody, SB-223245, TGF-beta1-small-intefering RNA (siRNA), and Smad2-siRNA (40 nM) prevented collagen type I network formation in response to ANG II and HG. Together, these data provide evidence that resistance artery fibrosis in type 1 diabetes and hypertension is a consequence of abnormal collagen type I release by VSMC and involves ERK1/2, alphavbeta(3)-integrin, and TGF-beta1 signaling. This pathway could be a potential target for overcoming small artery complications in diabetes and hypertension.  相似文献   

13.
Cardiac fibroblasts play a key role in fibrosis development in response to stress and injury. Angiotensin II (ANG II) is a major profibrotic activator whose downstream effects (such as phospholipase Cβ activation, cell proliferation, and extracellular matrix secretion) are mainly mediated via G(q)-coupled AT(1) receptors. Regulators of G protein signaling (RGS), which accelerate termination of G protein signaling, are expressed in the myocardium. Among them, RGS2 has emerged as an important player in modulating G(q)-mediated hypertrophic remodeling in cardiac myocytes. To date, no information is available on RGS in cardiac fibroblasts. We tested the hypothesis that RGS2 is an important regulator of ANG II-induced signaling and function in ventricular fibroblasts. Using an in vitro model of fibroblast activation, we have demonstrated expression of several RGS isoforms, among which only RGS2 was transiently upregulated after short-term ANG II stimulation. Similar results were obtained in fibroblasts isolated from rat hearts after in vivo ANG II infusion via minipumps for 1 day. In contrast, prolonged ANG II stimulation (3-14 days) markedly downregulated RGS2 in vivo. To delineate the functional effects of RGS expression changes, we used gain- and loss-of-function approaches. Adenovirally infected RGS2 had a negative regulatory effect on ANG II-induced phospholipase Cβ activity, cell proliferation, and total collagen production, whereas RNA interference of endogenous RGS2 had opposite effects, despite the presence of several other RGS. Together, these data suggest that RGS2 is a functionally important negative regulator of ANG II-induced cardiac fibroblast responses that may play a role in ANG II-induced fibrosis development.  相似文献   

14.
The kallikrein-kinin and renin-angiotensin systems interact at multiple levels. In the present study, we tested the hypothesis that the B1 kinin receptor (B1R) contributes to vascular hypertrophy in angiotensin II (ANG II)–induced hypertension, through a mechanism involving reactive oxygen species (ROS) generation and extracellular signal-regulated kinase (ERK1/2) activation. Male Wistar rats were infused with vehicle (control rats), 400 ng/Kg/min ANG II (ANG II rats) or 400 ng/Kg/min ANG II plus B1 receptor antagonist, 350 ng/Kg/min des-Arg9-Leu8-bradykinin (ANGII+DAL rats), via osmotic mini-pumps (14 days) or received ANG II plus losartan (10 mg/Kg, 14 days, gavage - ANG II+LOS rats). After 14 days, ANG II rats exhibited increased systolic arterial pressure [(mmHg) 184±5.9 vs 115±2.3], aortic hypertrophy; increased ROS generation [2-hydroxyethidium/dihydroethidium (EOH/DHE): 21.8±2.7 vs 6.0±1.8] and ERK1/2 phosphorylation (% of control: 218.3±29.4 vs 100±0.25]. B1R expression was increased in aortas from ANG II and ANG II+DAL rats than in aortas from the ANG II+LOS and control groups. B1R antagonism reduced aorta hypertrophy, prevented ROS generation (EOH/DHE: 9.17±3.1) and ERK1/2 phosphorylation (137±20.7%) in ANG II rats. Cultured aortic vascular smooth muscle cells (VSMC) stimulated with low concentrations (0.1 nM) of ANG II plus B1R agonist exhibited increased ROS generation, ERK1/2 phosphorylation, proliferating-cell nuclear antigen expression and [H3]leucine incorporation. At this concentration, neither ANG II nor the B1R agonist produced any effects when tested individually. The ANG II/B1R agonist synergism was inhibited by losartan (AT1 blocker, 10 µM), B1R antagonist (10 µM) and Tiron (superoxide anion scavenger, 10 mM). These data suggest that B1R activation contributes to ANG II-induced aortic hypertrophy. This is associated with activation of redox-regulated ERK1/2 pathway that controls aortic smooth muscle cells growth. Our findings highlight an important cross-talk between the DABK and ANG II in the vascular system and contribute to a better understanding of the mechanisms involved in vascular remodeling in hypertension.  相似文献   

15.
16.
Effect of angiotensin II (ANG II) on mouse embryonic stem (ES) cell proliferation was examined. ANG II increased [(3)H] thymidine incorporation in a time- (>4 h) and dose- (>10(-9) M) dependent manner. The ANG II-induced increase in [(3)H] thymidine incorporation was blocked by inhibition of ANG II type 1 (AT(1)) receptor but not by ANG II type 2 (AT(2)) receptor, and AT(1) receptor was expressed. ANG II increased inositol phosphates formation and [Ca(2+)](i), and translocated PKC alpha, delta, and zeta to the membrane fraction. Consequently, the inhibition of PLC/PKC suppressed ANG II-induced increase in [(3)H] thymidine incorporation. The inhibition of EGF receptor kinase or tyrosine kinase prevented ANG II-induced increase in [(3)H] thymidine incorporation. ANG II phosphorylated EGF receptor and increased Akt, mTOR, and p70S6K1 phosphorylation blocked by AG 1478 (EGF receptor kinase blocker). ANG II-induced increase in [(3)H] thymidine incorporation was blocked by the inhibition of p44/42 MAPKs but not by p38 MAPK inhibition. Indeed, ANG II phosphorylated p44/42 MAPKs, which was prevented by the inhibition of the PKC and AT(1) receptor. ANG II increased c-fos, c-jun, and c-myc levels. ANG II also increased the protein levels of cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK4 but decreased the p21(cip1/waf1) and p27(kip1), CDK inhibitory proteins. These proteins were blocked by the inhibition of AT(1) receptor, PLC/PKC, p44/42 MAPKs, EGF receptor, or tyrosine kinase. In conclusion, ANG II-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca(2+)/PKC and EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse ES cells.  相似文献   

17.
Angiotensin II (ANG II) is a multifunctional hormone that exerts potent vasoconstrictor and hypertrophic effects on vascular smooth muscle. Here, we demonstrate that the p38 mitogen-activated protein (MAP) kinase pathway is involved in ANG II-induced vascular contraction. Addition of ANG II to rat aortic smooth muscle cells (SMC) caused a rapid and transient increase of p38 activity through activation of the AT(1) receptor subtype. This response to ANG II was strongly attenuated by pretreating cells with antioxidants and diphenylene iodonium and was mimicked by exposure of cells to H(2)O(2). Stimulation of p38 by ANG II resulted in the enzymatic activation of MAP kinase-activated protein (MAPKAP) kinase-2 and the phosphorylation of heat shock protein 27 (HSP27) in aortic SMC. Pretreatment of cells with the specific p38 MAP kinase inhibitor SB-203580 completely blocked the ANG II-dependent activation of MAPKAP kinase-2 and phosphorylation of HSP27. ANG II also caused a robust activation of MAPKAP kinase-2 in the intact rat aorta. Incubation with SB-203580 significantly decreased the potency of ANG II to induce contraction of rat aortic rings and depressed the maximal hormone response. These results suggest that the p38 MAP kinase pathway selectively modulates the vasoconstrictor action of ANG II in vascular smooth muscle.  相似文献   

18.
Indoleamine 2,3-dioxygenase (IDO) metabolizes L-tryptophan to L-kynurenine, promotes immunosuppression, and has been described as a consumer of superoxide. We discovered IDO expression in periaortic fat and tested the hypothesis that periarterial IDO functionally reduces agonist-induced contraction. Our model was the thoracic aorta, abdominal aorta, and superior mesenteric artery of the male Sprague-Dawley rat. Periaortic fat from the thoracic aorta stained intensely for IDO, the brown fat marker uncoupling protein-1, and oil red O as a general lipid marker. White fat around the mesenteric artery and abdominal aorta stained less for IDO; brown fat was less abundant. IDO activity (kynurenine-to-tryptophan ratio via HPLC) was detected in visceral and mesenteric artery fat (ratio: ~4) but was highest in perithoracic aortic fat (ratio: 10 ± 1.1). In isometric contractile experiments, periadventitial fat reduced ANG II-induced thoracic aortic (with fat: 34% of without fat) and mesenteric artery (with fat: 63% of without fat) maximal contraction. In contrast, periadventitial fat did not reduce agonist-induced contraction in the abdominal aorta. The IDO inhibitor 1-L-methyltryptophan (1-MT) reversed the fat-induced reduction of ANG II-induced contraction in the thoracic aorta but not in the mesenteric artery. The IDO metabolite kynurenine relaxed the thoracic aorta only at high (9 mM) concentrations, whereas the downstream metabolite quinolinic acid (1 mM) relaxed the contracted thoracic aorta (~80%). 1-MT did not correct the reduction in basal superoxide levels observed in the presence of perithoracic aortic fat. We conclude that IDO is an enzyme active primarily in brown fat surrounding the thoracic aorta and depresses aortic contractility.  相似文献   

19.
NADPH oxidase has been implicated in ANG II-induced oxidative stress and hypertension in males; however, the contribution of oxidative stress to ANG II hypertension in females is unknown. In the present study, we tested the hypothesis that greater antioxidant capacity in female spontaneously hypertensive rats (SHR) blunts ANG II-induced oxidative stress and hypertension relative to males. Whole body and renal cortical oxidative stress levels were assessed in female and male SHR left untreated or following 2 wk of chronic ANG II infusion. Chronic ANG II infusion increased NADPH oxidase enzymatic activity in the renal cortex of both sexes; however, this increase only reached significance in female SHR. In contrast, male SHR demonstrated a greater increase in all measurements of reactive oxygen species production in response to chronic ANG II infusion. ANG II infusion increased plasma superoxide dismutase activity only in female SHR (76 ± 9 vs. 190 ± 7 Units·ml(-1)·mg(-1), P < 0.05); however, cortical antioxidant capacity was unchanged by ANG II in either sex. To assess the functional implication of alterations in NADPH enzymatic activity and oxidative stress levels following ANG II infusion, additional experiments assessed the ability of the in vivo antioxidant apocynin to modulate ANG II hypertension. Apocynin significantly blunted ANG II hypertension in male SHR (174 ± 2 vs. 151 ± 1 mmHg, P < 0.05), with no effect in females (160 ± 11 vs. 163 ± 10 mmHg). These data suggest that ANG II hypertension in male SHR is more dependent on increases in oxidative stress than in female SHR.  相似文献   

20.
Although IGF-II activating the IGF-II receptor signaling pathway has been found to stimulate cardiomyocyte hypertrophy, the role of IGF-II in cardiac cell apoptosis remains unclear. This study aimed to identify the roles of IGF-II and/or IGF-II receptors (IGF-II/IIR) in cardiomyoblast apoptosis and in hypertensive rat hearts with abdominal aorta ligation. Cultured rat heart-derived H9c2 cardiomyoblasts and excised hearts from Sprague-Dawley rats with 0- to 20-day complete abdominal aorta ligation, a model of ANG II elevation and hypertension, were used. IGF-II/IIR expression, caspase activity, DNA fragmentation, and apoptotic cells were measured by RT-PCR, Western blot, agarose gel electrophoresis, and TUNEL assay following various combinations of ANG II, IGF-II/IIR antibody, CsA (calcineurin inhibitor), SP-600125 (JNK inhibitor), SB-203580 (p38 inhibitor), U-0126 (MEK inhibitor), or Staurosporine (PKC inhibitor) in H9c2 cells. ANG II-induced DNA fragmentation and TUNEL-positive cells were blocked by IGF-II/IIR antibodies and antisense IGF-II, but not by IGF-II sense. IGF-II-induced apoptosis was blocked by IGF-IIR antibody and CsA. The increased gene expressions of IGF-II and -IIR induced by ANG II were reversed by U-0126 and Sp600125, respectively. Caspase 8 activities induced by ANG II were attenuated by U-0126, SP-600125, and CsA. DNA fragmentation induced by ANG II was totally blocked by SP-600125, and CsA and was attenuated by U-0126. In rats with 0- to 20-day complete abdominal aorta ligation, the increases in IGF-II/IIR levels in the left ventricle were accompanied by hypertension as well as increases in caspase 9 activities and TUNEL-positive cardiac myocytes. ANG II-induced apoptosis was reversed by IGF-II/IIR blockade and coexisted with increased transactivation of IGF-II and -IIR, which are mediated by ERK and JNK pathways, respectively, both of which further contributed to cardiomyoblast apoptosis via calcineurin signaling. The increased cardiac IGF-II, IGF-IIR, caspase 9, and cellular apoptosis were also found in hypertensive rats with abdominal aorta ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号