首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laquinimod is a novel oral drug that is currently being evaluated for the treatment of relapsing-remitting (RR) multiple sclerosis (MS). Using the animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we examined how laquinimod promotes immune modulation. Oral laquinimod treatment reversed established RR-EAE and was associated with reduced central nervous system (CNS) inflammation, decreased Th1 and Th17 responses, and an increase in regulatory T cells (Treg). In vivo laquinimod treatment inhibited donor myelin-specific T cells from transferring EAE to naive recipient mice. In vivo laquinimod treatment altered subpopulations of myeloid antigen presenting cells (APC) that included a decrease in CD11c(+)CD11b(+)CD4(+) dendritic cells (DC) and an elevation of CD11b(hi)Gr1(hi) monocytes. CD11b(+) cells from these mice exhibited an anti-inflammatory type II phenotype characterized by reduced STAT1 phosphorylation, decreased production of IL-6, IL-12/23 and TNF, and increased IL-10. In adoptive transfer, donor type II monocytes from laquinimod-treated mice suppressed clinical and histologic disease in recipients with established EAE. As effects were observed in both APC and T cell compartments, we examined whether T cell immune modulation occurred as a direct effect of laquinimod on T cells, or as a consequence of altered APC function. Inhibition of Th1 and Th17 differentiation was observed only when type II monocytes or DC from laquinimod-treated mice were used as APC, regardless of whether myelin-specific T cells were obtained from laquinimod-treated or untreated mice. Thus, laquinimod modulates adaptive T cell immune responses via its effects on cells of the innate immune system, and may not influence T cells directly.  相似文献   

2.
B cells, but not T cells, are considered to be important for the formation of follicular dendritic cell (FDC) clusters. Stimulation with agonist mAbs against CD137 (4-1BB), a TNFR family member primarily expressed on activated T cells, was effective in promoting T cell responses, but paradoxically suppressed T-dependent humoral immunity and autoantibody production in autoimmune disease models. Our present study shows that agonistic anti-CD137 treatment activates T cells, resulting in diminished FDC networks in B cell follicles, which are important components in T-dependent humoral immune responses both before and after the initiation of an immune response. Pretreatment with anti-CD137 before the secondary immunization inhibited memory Ab responses. Interestingly, CD137 costimulation-induced diminishment of FDC is T cell dependent. In addition, both CD4(+) and CD8(+) T cells are recruited into FDC area and are able to regulate FDCs by CD137 costimulation through a direct or indirect mechanism. These studies have revealed a previously unappreciated role of T cells in the regulation of FDC networks.  相似文献   

3.
CD4(+)CD25(+) regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance and prevention of autoimmune disease. However, accumulating evidence suggests that a fraction of the peripheral CD4(+)CD25(-) T cell population also possesses regulatory activity in vivo. Recently, it has been shown glucocorticoid-induced TNFR family-related gene (GITR) is predominantly expressed on CD4(+)CD25(+) regulatory T cells. In this study, we show evidence that CD4(+)GITR(+) T cells, regardless of the CD25 expression, regulate the mucosal immune responses and intestinal inflammation. SCID mice restored with the CD4(+)GITR(-) T cell population developed wasting disease and severe chronic colitis. Cotransfer of CD4(+)GITR(+) population prevented the development of CD4(+)CD45RB(high) T cell-transferred colitis. Administration of anti-GITR mAb-induced chronic colitis in mice restored both CD45RB(high) and CD45RB(low) CD4(+) T cells. Interestingly, both CD4(+)CD25(+) and CD4(+)CD25(-) GITR(+) T cells prevented wasting disease and colitis. Furthermore, in vitro studies revealed that CD4(+)CD25(-)GITR(+) T cells as well as CD4(+)CD25(+)GITR(+) T cells expressed CTLA-4 intracellularly, showed anergic, suppressed T cell proliferation, and produced IL-10 and TGF-beta. These data suggest that GITR can be used as a specific marker for regulatory T cells controlling mucosal inflammation and also as a target for treatment of inflammatory bowel disease.  相似文献   

4.
CTLA-4 (CD152) is actively involved in down-regulating T cell activation and maintaining lymphocyte homeostasis. Our earlier studies showed that targeted engagement of CTLA-4 can down-modulate T cell response and suppress allo- and autoimmune responses. In this study, we report that targeted CTLA-4 engagement can induce immune tolerance to a specific target through selective induction of an Ag-specific CD4(+)CD25(+)CTLA-4(high) regulatory T cell (Treg cell) population. Allogeneic cells coated with anti-CTLA-4 Ab induced immune hyporesponsiveness through suppression of proinflammatory cytokines IFN-gamma and IL-2, and up-regulation of the regulatory cytokines IL-10, TGF-beta1, and IL-4, presumably through the engagement of CTLA-4 on activated T cells. Although rechallenge with alloantigen failed to break the unresponsiveness, a transient recovery from tolerance was observed in the presence of high concentrations of exogenous IL-2, saturating concentrations of neutralizing anti-TGF-beta1 and anti-IL-10 Abs, and blocking anti-CTLA-4 Ab, and upon depletion of CD4(+)CD25(+) Treg cells. The CD4(+)CD25(+)CTLA-4(high) Treg cells from tolerant mice suppressed the effector function of CD25(-) T cells from Ag-primed mice. Adoptive transfer of these Treg cells into Ag-primed mice resulted in a significantly reduced alloantigen-specific response. Further characterization demonstrated that the Treg cells with memory phenotype (CD62L(-)) were more potent in suppressing the alloantigen-specific T cell response. These results strongly support that the targeted engagement of CTLA-4 has therapeutic potential for the prevention of transplant rejection.  相似文献   

5.
Semaphorin-3A (Sema3A), a member of a large family of conserved proteins originally implicated in axon guidance, is expressed by activated T cells and downmodulates T cell activation in vitro. This study examined the effect and mechanism of action of Sema3A overexpression in a mouse model of collagen-induced arthritis. Prophylactic i.p. administration of plasmid DNA encoding Sema3A markedly reduced the incidence, disease severity, and articular inflammation compared with control plasmid without insert. Treatment of Sema3A reduced anticollagen IgG levels and suppressed collagen-specific proinflammatory cytokine (IFN-γ and IL-17) release, but increased IL-10 concentration in the serum. In line with results in arthritic mice, Sema3A expression is defective in CD4(+) T cells derived from patients with rheumatoid arthritis. In contrast, increased expression of the Sema3A receptor neuropilin-1 (NP-1) is detected in the same cells. The CD4(+)NP-1(+) T cells are a T cell subset involved in the control of the immune responses. They express greater amounts of IL-10 and show suppressive activities on autologous CD4(+) T cells. Sema3A acted directly on CD4(+)NP-1(+) T cells, because it could increase IL-10 production and influence the regulatory function on CD4(+) T cell growth. Therefore, I propose that Sema3A increases the CD4(+)NP-1(+) T cell ability to suppress alloresponses, that its transient expression is altered in rheumatoid inflammation, and that reintroduction of Sema3A is sufficient to attenuate collagen-induced arthritis, supporting its therapeutic potential in the treatment of autoimmune disorders.  相似文献   

6.
The immunology of vertical HIV transmission differs from that of adult infection in that the immune system of the infant is not fully matured, and the factors that influence the functionality of CD8(+) T cell responses against HIV in children remain largely undefined. We have investigated CD8(+) T cell responses in 65 pediatric subjects with vertically acquired HIV-1 infection. Vigorous, broad, and Ag dose-driven CD8(+) T cell responses against HIV Ags were frequently observed in children who were older than 3 years of age and maintained CD4(+) T cell counts >400 cells/ micro l. In contrast, younger age or a CD4(+) T cell count <400 cells/ micro l was associated with poor CD8(+) T cell responses and high HIV loads. Furthermore, subjects with a severely depleted and phenotypically altered CD4(+) T cell compartment had circulating Gag-specific CD8(+) T cells with impaired IFN-gamma production. When viral load was not suppressed by antiviral treatment, subjects that fell below the putative age and CD4(+) T cell count thresholds had significantly reduced CD8(+) T cell responses and significantly higher viral loads. Thus, the data suggest that fully effective HIV-specific CD8(+) T cell responses take years to develop despite an abundance of Ag in early life, and responses are further severely impaired, independent of age, in children who have a depleted or skewed CD4(+) T cell compartment. The results are discussed in relation to differences between the neonatal and adult immune systems in the ability to respond to HIV infection.  相似文献   

7.
Sinomenine inhibits primary CD4+ T-cell proliferation via apoptosis   总被引:2,自引:0,他引:2  
Sinomenine is an active component isolated from Sinomenium acutum and is widely used as an immunosuppressive drug for treating autoimmune diseases. CD4(+) T-cell population plays a key role in adaptive immune response and is related to some autoimmune diseases. In this study, we investigated the possible immunosuppressive effect of sinomenine on CD4(+) T cells and its underlying mechanism. Our data demonstrated that sinomenine remarkably suppressed the proliferation of CD4(+) T cells, blocked the cell cycle progression from G0/G1 phase to S plusG2/M phases. Finally, the immunosuppressive activity elicited by sinomenine in CD4(+) primary lymphocytes was found to be largely accounted for by caspase 3-dependent cells apoptosis. Sinomenine did not significantly alter the expression of bcl-2 in activated CD4(+) primary T cells, suggesting that bcl-2 might not be involved in sinomenine-induced T cells apoptosis. In sum, this study proposes a novel mechanism for the immunosuppressive function of sinomenine on primary mouse CD4(+) T cells.  相似文献   

8.
Fms-like tyrosine kinase receptor 3-ligand (Flt3-L) and GM-CSF cause expansion of different subsets of dendritic cells and skew the immune response toward predominantly Th1 and Th2 type, respectively. In the present study, we investigated their effects on experimental autoimmune thyroiditis in CBA/J mice. Relative to mouse thyroglobulin (mTg) immunized controls, mTg-immunized mice treated with Flt3-L showed more severe thyroiditis characterized by enhanced lymphocytic infiltration of the thyroid, and IFN-gamma and IL-2 production. In contrast, mice treated with GM-CSF, either before or after immunization with mTg, showed suppressed T cell response to mTg and failed to develop thyroiditis. Lymphocytes from these mice, upon activation with mTg in vitro, produced higher levels of IL-4 and IL-10. Additionally, GM-CSF-treated mice showed an increase in the frequency of CD4(+)/CD25(+) T cells, which suppressed the mTg-specific T cell response. Neutralization of IL-10, but not IL-4, or depletion of CD4(+)/CD25(+) cells resulted in increased mTg-specific in vitro T cell proliferation suggesting that IL-10 produced by the Ag-specific CD4(+)/CD25(+) regulatory T cells might be critical for disease suppression. These results indicate that skewing immune response toward Th2, through selective activation of dendritic cells using GM-CSF, may have therapeutic potential in Th1 dominant autoimmune diseases including Hashimoto's thyroiditis.  相似文献   

9.
CD4+CD25+ regulatory T cells in HIV infection   总被引:9,自引:0,他引:9  
The immune system faces the difficult task of discerning between foreign, potentially pathogen-derived antigens and self-antigens. Several mechanisms, including deletion of self-reactive T cells in the thymus, have been shown to contribute to the acceptance of self-antigens and the reciprocal reactivity to foreign antigens. Over the last decade it has become increasingly clear that CD4(+)CD25(+) T(Reg) cells are crucial for maintenance of T cell tolerance to self-antigens in the periphery, and to avoid development of autoimmune disorders. Recently, evidence has also emerged that demonstrates that CD4(+)CD25(+) T(Reg) cells can also suppress T cell responses to foreign pathogens, including viruses such as HIV. In this article we review the current knowledge and potential role of CD4(+)CD25(+) T(Reg) cells in HIV infection.  相似文献   

10.
In multiple sclerosis, activated CD4(+) T cells initiate an immune response in the brain and spinal cord, resulting in demyelination, degeneration and progressive paralysis. Repulsive guidance molecule-a (RGMa) is an axon guidance molecule that has a role in the visual system and in neural tube closure. Our study shows that RGMa is expressed in bone marrow-derived dendritic cells (BMDCs) and that CD4(+) T cells express neogenin, a receptor for RGMa. Binding of RGMa to CD4(+) T cells led to activation of the small GTPase Rap1 and increased adhesion of T cells to intracellular adhesion molecule-1 (ICAM-1). Neutralizing antibodies to RGMa attenuated clinical symptoms of mouse myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and reduced invasion of inflammatory cells into the CNS. Silencing of RGMa in MOG-pulsed BMDCs reduced their capacity to induce EAE following adoptive transfer to naive C57BL/6 mice. CD4(+) T cells isolated from mice treated with an RGMa-specific antibody showed diminished proliferative responses and reduced interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4 and IL-17 secretion. Incubation of PBMCs from patients with multiple sclerosis with an RGMa-specific antibody reduced proliferative responses and pro-inflammatory cytokine expression. These results demonstrate that an RGMa-specific antibody suppresses T cell responses, and suggest that RGMa could be a promising molecular target for the treatment of multiple sclerosis.  相似文献   

11.
Chronic inflammation can associate with autoreactive immune responses, including CD4(+) T cell responses to self-Ags. In this paper, we show that the adipocyte-derived proinflammatory hormone leptin can affect the survival and proliferation of autoreactive CD4(+) T cells in experimental autoimmune encephalomyelitis, an animal model of human multiple sclerosis. We found that myelin olygodendrocyte glycoprotein peptide 35-55 (MOG(35-55))-specific CD4(+) T cells from C57BL/6J wild-type mice could not transfer experimental autoimmune encephalomyelitis into leptin-deficient ob/ob mice. Such a finding was associated with a reduced proliferation of the transferred MOG(35-55)-reactive CD4(+) T cells, which had a reduced degradation of the cyclin-dependent kinase inhibitor p27(kip1) and ERK1/2 phosphorylation. The transferred cells displayed reduced Th1/Th17 responses and reduced delayed-type hypersensitivity. Moreover, MOG(35-55)-reactive CD4(+) T cells in ob/ob mice underwent apoptosis that associated with a downmodulation of Bcl-2. Similar results were observed in transgenic AND-TCR- mice carrying a TCR specific for the pigeon cytochrome c 88-104 peptide. These molecular events reveal a reduced activity of the nutrient/energy-sensing AKT/mammalian target of rapamycin pathway, which can be restored in vivo by exogenous leptin replacement. These results may help to explain a link between chronic inflammation and autoimmune T cell reactivity.  相似文献   

12.
Effective immunotherapy for type 1 diabetes (T1D) relies on active induction of peripheral tolerance. Myeloid-derived suppressor cells (MDSCs) play a critical role in suppressing immune responses in various pathologic settings via multiple mechanisms, including expansion of regulatory T cells (Tregs). In this study, we investigated whether MDSCs could act as APCs to induce expansion of Ag-specific Tregs, suppress T cell proliferation, and prevent autoimmune T1D development. We found that MDSC-mediated expansion of Tregs and T cell suppression required MHC-dependent Ag presentation. A murine T1D model was established in INS-HA/RAG(-/-) mice in which animals received CD4-HA-TCR transgenic T cells via adoptive transfer. We found a significant reduction in the incidence of diabetes in recipients receiving MDSC plus HA, but not OVA peptide, leading to 75% diabetes-free mice among the treated animals. To test further whether MDSCs could prevent diabetes onset in NOD mice, nondiabetic NOD/SCID mice were injected with inflammatory T cells from diabetic NOD mice. MDSCs significantly prevented diabetes onset, and 60% of MDSC-treated mice remained diabetes free. The pancreata of treated mice showed significantly lower levels of lymphocyte infiltration in islet and less insulitis compared with that of the control groups. The protective effects of MDSCs might be mediated by inducing anergy in autoreactive T cells and the development of CD4(+)CD25(+)Foxp3(+) Tregs. Thist study demonstrates a remarkable capacity of transferred MDSCs to downregulate Ag-specific autoimmune responses and prevent diabetes onset, suggesting that MDSCs possess great potential as a novel cell-based tolerogenic therapy in the control of T1D and other autoimmune diseases.  相似文献   

13.
Multiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-gamma, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-gamma in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). In this study, we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of myelin oligodendrocyte glycoprotein-specific IFN-gamma-producing CD4(+) T cells in the CNS. IL-17(+)CD4(+) T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3(+)CD4(+) T cells in these mice was equivalent to that of control mice. Intracerebral BCG infection-induced protection of EAE and suppression of myelin oligodendrocyte glycoprotein-specific IL-17(+)CD4(+) T cell responses were similar in both wild-type and IFN-gamma-deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-gamma-mediated mechanisms.  相似文献   

14.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

15.
The oral administration of myelin proteins has been used for the successful prevention and treatment of experimental autoimmune encephalomyelitis (EAE). We questioned whether the thymus was involved in oral tolerance. In this study, euthymic myelin basic protein (MBP) TCR transgenic mice are protected from EAE when fed MBP but are not protected when thymectomized. Similarly, in a cell transfer system, T cell responses to OVA measured in vivo were suppressed significantly only in the OVA-fed euthymic mice but not in the thymectomized mice. We observed that the absence of the thymus dramatically enhanced the Th1 response. We explored three alternatives to determine the role of the thymus in oral tolerance: 1) as a site for the induction of regulatory T cells; 2) a site for deletion of autoreactive T cells; or 3) a site for the dissemination of naive T cells. We found that Foxp3(+)CD4(+)CD25(+) T cells are increased in the periphery but not in the thymus after Ag feeding. These CD4(+)CD25(+) T cells also express glucocorticoid-induced TNFR and intracellular CTLA4 and suppress Ag-specific proliferation of CD4(+)CD25(-) cells in vitro. The thymus also plays a role in deletion of autoreactive T cells in the periphery following orally administered MBP. However, thymectomy does not result in homeostatic proliferation and the generation of memory cells in this system. Overall, the oral administration of MBP has a profound effect on systemic immune responses, mediated largely by the generation of regulatory T cells that act to prevent or suppress EAE.  相似文献   

16.
Tago, F., Tsukimoto, M., Nakatsukasa, H. and Kojima. S. Repeated 0.5 Gy Gamma Irradiation Attenuates Autoimmune Disease in MRL-lpr/lpr Mice with Suppression of CD3(+)CD4(-)CD8(-)B220(+) T-Cell Proliferation and with Up-regulation of CD4(+)CD25(+)Foxp3(+) Regulatory T Cells. Radiat. Res. 169, 59-66 (2008). MRL-lpr/lpr mice are used as a model of systemic lupus erythematosus. We previously reported attenuation of autoimmune disease in MRL-lpr/lpr mice by repeated gamma irradiation (0.5 Gy each time). In this study, we investigated the mechanisms of this attenuation by measuring the weight of the spleen and the population of highly activated CD3(+)CD4(-)CD8(-)B220(+) T cells, which are characteristically involved in autoimmune pathology in these mice. Splenomegaly and an increase in the percentage of CD3(+)CD4(-)CD8(-)B220(+) T cells, which occur with aging in nonirradiated mice, were suppressed in irradiated mice. The high proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells was suppressed in the irradiated animals. The production of autoantibodies and the level of IL6, which activates B cells, were also lowered by radiation exposure. These results indicate that progression of pathology is suppressed by repeated 0.5-Gy gamma irradiation. To uncover the mechanism of the immune suppression, we measured the regulatory T cells, which suppress activated T cells and excessive autoimmune responses. We found that regulatory T cells were significantly increased in irradiated mice. We therefore conclude that repeated 0.5-Gy gamma irradiation suppresses the proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells and the production of IL6 and autoantibodies and up-regulates regulatory T cells.  相似文献   

17.
CFA is a strong adjuvant capable of stimulating cellular immune responses. Paradoxically, adjuvant immunotherapy by prior exposure to CFA or live mycobacteria suppresses the severity of experimental autoimmune encephalomyelitis (EAE) and spontaneous diabetes in rodents. In this study, we investigated immune responses during adjuvant immunotherapy of EAE. Induction of EAE in CFA-pretreated mice resulted in a rapid influx into the draining lymph nodes (dLNs) of large numbers of CD11b(+)Gr-1(+) myeloid cells, consisting of immature cells with ring-shaped nuclei, macrophages, and neutrophils. Concurrently, a population of mycobacteria-specific IFN-γ-producing T cells appeared in the dLNs. Immature myeloid cells in dLNs expressed the chemokines CXCL10 and CXCL16 in an IFN-γ-dependent manner. Subsequently, CD4(+) T cells coexpressing the cognate chemokine receptors CXCR3 and CXCR6 and myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+) T cells accumulated within the chemokine-expressing dLNs, rather than within the CNS. Migration of CD4(+) T cells toward dLN cells was abolished by depleting the CD11b(+) cells and was also mediated by the CD11b(+) cells alone. In addition to altering the distribution of MOG-specific T cells, adjuvant treatment suppressed development of MOG-specific IL-17. Thus, adjuvant immunotherapy of EAE requires IFN-γ, which suppresses development of the Th17 response, and diverts autoreactive T cells away from the CNS toward immature myeloid cells expressing CXCL10 and CXCL16 in the lymph nodes.  相似文献   

18.
19.
Regulatory CD4(+)CD25(+) T cells are important in suppressing immune responses. The requirements for the maintenance of peripheral CD4(+)CD25(+) T cells remain incompletely understood. Receptor activator of NF-kappaB (RANK) and its ligand (RANKL; also known as CD254, OPGL and TRANCE) are key regulators of bone remodeling, mammary gland formation, lymph node development and T-cell/dendritic cell communication. Here we report that RANKL is expressed in keratinocytes of the inflamed skin. RANKL overexpression in keratinocytes resulted in functional alterations of epidermal dendritic cells and systemic increases of regulatory CD4(+)CD25(+) T cells. Thus, epidermal RANKL expression can change dendritic cell functions to maintain the number of peripheral CD4(+)CD25(+) regulatory T cells. Epidermal RANKL mediated ultraviolet-induced immunosuppression and overexpression of epidermal RANKL suppressed allergic contact hypersensitivity responses and the development of systemic autoimmunity. Therefore, environmental stimuli at the skin can rewire the local and systemic immune system by means of RANKL.  相似文献   

20.
Ex vivo treatment of bone marrow-derived dendritic cells (DCs) with TNF-alpha has been previously shown to induce partial maturation of DCs that are able to suppress autoimmunity. In this study, we demonstrate that i.v. administration of TNF-alpha-treated, semimature DCs pulsed with thyrogloblin (Tg), but not with OVA Ag, inhibits the subsequent development of Tg-induced experimental autoimmune thyroiditis (EAT) in CBA/J mice. This protocol activates CD4(+)CD25(+) T cells in vivo, which secrete IL-10 upon specific recognition of Tg in vitro and express regulatory T cell (Treg)-associated markers such as glucocorticoid-induced TNFR, CTLA-4, and Foxp3. These CD4(+)CD25(+) Treg cells suppressed the proliferation and cytokine release of Tg-specific, CD4(+)CD25(-) effector cells in vitro, in an IL-10-independent, cell contact-dependent manner. Prior adoptive transfer of the same CD4(+)CD25(+) Treg cells into CBA/J hosts suppressed Tg-induced EAT. These results demonstrate that the tolerogenic potential of Tg-pulsed, semimature DCs in EAT is likely to be mediated through the selective activation of Tg-specific CD4(+)CD25(+) Treg cells and provide new insights for the study of Ag-specific immunoregulation of autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号