首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Normal (noninflamed) human skin contains a network of lymphocytes, but little is known about the homing and function of these cells. The majority of alphabeta T cells in normal skin express CCR8 and produce proinflammatory cytokines. In this study we examined other subsets of cutaneous lymphocytes, focusing on those with potential function in purging healthy tissue of transformed and stressed cells. Human dermal cell suspensions contained significant populations of Vdelta1(+) gammadelta T cells and CD56(+)CD16(-) NK cells, but lacked the subsets of Vdelta2(+) gammadelta T cells and CD56(+)CD16(+) NK cells, which predominate in peripheral blood. The skin-homing receptors CCR8 and CLA were expressed by a large fraction of both cell types, whereas chemokine receptors associated with lymphocyte migration to inflamed skin were absent. Neither cell type expressed CCR7, although gammadelta T cells up-regulated this lymph node-homing receptor upon TCR triggering. Stimulation of cutaneous Vdelta1(+) gammadelta T cell lines induced secretion of large amounts of TNF-alpha, IFN-gamma, and the CCR8 ligand CCL1. In contrast to cutaneous alphabeta T cells, both cell types had the capacity to produce intracellular perforin and displayed strong cytotoxic activity against melanoma cells. We therefore propose that gammadelta T cells and NK cells are regular constituents of normal human skin with potential function in the clearance of tumor and otherwise stressed tissue cells.  相似文献   

3.
Subsets of gammadelta T cells localize to distinct tissue sites in the absence of exogenous Ag stimulation or development of effector/memory cells. Selective lymphocyte homing from the blood into tissues is controlled by a multistep process involving vascular and lymphocyte adhesion molecules, and G protein-linked chemokine receptors. The role of these mechanisms in the tissue tropism of gammadelta T cells is still poorly understood. In this study, we demonstrate that a subset of gammadelta T cells, most of which express an antigenically distinct TCR and are characterized by coexpression of CD8, selectively accumulated in tissues that expressed high levels of the mucosal vascular addressin, mucosal addressin cell adhesion molecule 1. These cells expressed higher levels of alpha(4)beta(7) integrins than other gammadelta T cell subsets and selectively migrated to the CCR7 ligand secondary lymphoid-tissue chemokine (CCL21). Integrin activation by CCL21 selectively increased CD8(+)gammadelta T cell binding to recombinant mucosal addressin cell adhesion molecule 1. These results suggest that the tropism of circulating CD8(+)gammadelta T cells for mucosal tissues is due, at least in part, to selective developmental expression of adhesion molecules and chemokine receptors.  相似文献   

4.
Gammadelta T lymphocytes play an important role in the immune defense against infection, based on the unique reactivity of human Vdelta2Vgamma9 gammadelta T cells toward bacterial phosphoantigens. Chemokines and their corresponding receptors orchestrate numerous cellular reactions, including leukocyte migration, activation, and degranulation. In this study we investigated the expression of various receptors for inflammatory and homeostatic chemokines on peripheral blood gammadelta T cells and compared their expression patterns with those on alphabeta T cells. Although several of the analyzed receptors (including CCR6, CCR7, CXCR4, and CXCR5) were not differentially expressed on gammadelta vs alphabeta T cells, gammadelta T cells expressed strongly increased levels of the RANTES/macrophage inflammatory protein-1alpha/-1beta receptor CCR5 and also enhanced levels of CCR1-3 and CXCR1-3. CCR5 expression was restricted to Vdelta2 gammadelta T cells, while the minor subset of Vdelta1 gammadelta T cells preferentially expressed CXCR1. Stimulation with heat-killed extracts of Mycobacterium tuberculosis down-modulated cell surface expression of CCR5 on gammadelta T cells in a macrophage-dependent manner, while synthetic phosphoantigen isopentenyl pyrophosphate and CCR5 ligands directly triggered CCR5 down-modulation on gammadelta T cells. The functionality of chemokine receptors CCR5 and CXCR3 on gammadelta T cells was demonstrated by Ca(2+) mobilization and chemotactic response to the respective chemokines. Our results identify high level expression of CCR5 as a characteristic and selective feature of circulating Vdelta2 gammadelta T cells, which is in line with their suspected function as Th1 effector T cells.  相似文献   

5.
Alphabeta+ and gammadelta+ T cells have different mechanisms of epitope recognition and are stimulated by antigens of different chemical nature. An immunization model with antigens from the spirochete Brachyspira hyodysenteriae was used to examine the requirements for proliferation of circulating porcine CD4+ and gammadelta+ T cells in mixed lymphocyte cultures. CD4+ T cells only responded to stimulation with B. hyodysenteriae antigens, whereas gammadelta+ T cells proliferated when cultures were stimulated with either spirochetal antigens or interleukin-2 (IL-2). T cells that had proliferated expressed high levels of IL-2-receptor-alpha (IL-2Ralpha). Furthermore, neutralization of IL-2 at the beginning of the culture period was more efficient in blocking gammadelta+ than CD4+ T cell proliferation. Immunization induced interferon-gamma (IFN-gamma) production by CD4+ T cells, whereas only a small fraction of the antigen-stimulated gammadelta+ T cells produced this cytokine. Our results indicate that, under the same environmental conditions, CD4+ T cell functions are more tightly regulated when compared to gammadelta+ T cells. We conclude that these differences are due, in part, to the enhanced gammadelta+ T cell responsiveness to IL-2.  相似文献   

6.
Questionable relevance of gamma delta T lymphocytes in renal cell carcinoma   总被引:1,自引:0,他引:1  
Adoptive gammadelta T cell immunotherapy has moved briskly into clinical trials prompted by several small studies suggesting abundant accumulation of gammadelta T cells within renal cell carcinoma (RCC). In this study, we re-examined levels of gammadelta T cells within RCC tumors and correlated levels of these cells with pathologic features and outcome associated with this form of cancer. Tissues from 248 consecutive clear cell RCC tumors obtained from 2000 to 2003 were stained and quantified for total CD3+ and gammadelta T cells per mm2. Wilcoxon rank sum and Kruskal-Wallis tests were used to evaluate associations between T cell amounts and prognostic factors (age, gender, tumor size, stage, grade, tumor necrosis). Cox models were used to assess associations with RCC-specific death. Median numbers of total CD3+ and gammadelta T cells were 281/mm2 (interquartile range (IQR): 149-536) and 2.6/mm2 (IQR: 1.3-4.6), respectively. The median percentage of CD3+ T cells that were gammadelta T cells was 1.0% (IQR: 0.4-1.9). This low percentage of intratumoral gammadelta T cells was diluted even further with rising CD3+ T cell infiltration. Percentages of gammadelta T cells were not associated with even one single clinicopathologic feature examined. Median follow-up for this study was 3.1 years (48 patients died of RCC) and Cox analysis failed to demonstrate that gammadelta T cells (hazard ratio=1.02, p=0.25) were predictive of RCC-specific death. gammadelta T cells are rare and not recruited nor expanded within RCC tumors. Percentages of gammadelta T cells fail to correlate with any prognostic features of RCC nor specific death. As such, the role of gammadelta T cells in RCC immunobiology remains questionable.  相似文献   

7.
We previously reported that resident gammadelta T cells in the peritoneal cavity rapidly produced IL-17 in response to Escherichia coli infection to mobilize neutrophils. We found in this study that the IL-17-producing gammadelta T cells did not produce IFN-gamma or IL-4, similar to Th17 cells. IL-17-producing gammadelta T cells specifically express CD25 but not CD122, whereas CD122(+) gammadelta T cells produced IFN-gamma. IL-17-producing gammadelta T cells were decreased but still present in IL-2- or CD25-deficient mice, suggesting a role of IL-2 for their maintenance. IFN-gamma-producing CD122(+) gammadelta T cells were selectively decreased in IL-15-deficient mice. Surprisingly, IL-17-producing gammadelta T cells were already detected in the thymus, although CD25 was not expressed on the intrathymic IL-17-producing gammadelta T cells. The number of thymic IL-17-producing gammadelta T cells was peaked at perinatal period and decreased thereafter, coincided with the developmental kinetics of Vgamma6(+) Vdelta1(+) gammadelta T cells. The number of IL-17-producing gammadelta T cells was decreased in fetal thymus of Vdelta1-deficient mice, whereas Vgamma5(+) fetal thymocytes in normal mice did not produce IL-17. Thus, it was revealed that the fetal thymus-derived Vgamma6(+) Vdelta1(+) T cells functionally differentiate to produce IL-17 within thymus and thereafter express CD25 to be maintained in the periphery.  相似文献   

8.
The healthy trophoblast does not express classical HLA-A and HLA-B products; therefore, an MHC-restricted recognition of trophoblast-presented Ags is unlikely. In the decidua and also in peripheral blood of healthy pregnant women, gammadelta T cells significantly increase in number. We investigated the possible role of gammadelta T cells in recognition of trophoblast-presented Ags. PBL and isolated gammadelta T cells from healthy pregnant women as well as from those at risk for premature pregnancy termination were conjugated to choriocarcinoma cells (JAR) transfected with nonclassical HLA Ags (HLA-E, HLA-G). To investigate the involvement of killer-inhibitory/killer-activatory receptors in trophoblast recognition, we tested the effect of CD94 block on cytotoxic activity of Vdelta2(+) enriched gammadelta T cells to HLA-E- and/or HLA-G-transfected targets. Lymphocytes from healthy pregnant women preferentially recognized HLA(-) choriocarcinoma cells, whereas those from pathologically pregnant patients did not discriminate between HLA(+) and HLA(-) cells. Normal pregnancy Vdelta2(+) T cells conjugated at a significantly increased rate to HLA-E transfectants, whereas Vdelta2(+) lymphocytes from pathologically pregnant women did not show a difference between those and HLA(-) cells. Blocking of the CD94 molecule of Vdelta2(+) lymphocytes from healthy pregnant women resulted in an increased cytotoxic activity to HLA-E-transfected target cells. These data indicate that Vdelta2(+) lymphocytes of healthy pregnant women recognize HLA-E on the trophoblast, whereas Vdelta1 cells react with other than HLA Ags. In contrast to Vdelta2(+) lymphocytes from healthy pregnant women, those from women with pathological pregnancies do not recognize HLA-E via their killer-inhibitory receptors and this might account for their high cytotoxic activity.  相似文献   

9.
10.
We previously reported that human Vgamma2Vdelta2-gammadelta T cells were activated by many human tumor cell lines treated with pamidronate (PAM) in a gammadelta TCR-dependent manner. In the present study, we indicated that a synthetic pyrophosphomonoester Ag, 2-methy-3-butenyl-1-pyrophosphate, could directly "sensitize" the tumor cells to activate gammadelta T cells independently of the host metabolism, while the sensitizing effect of PAM was reported to be dependent on the pharmacological activity. Some exceptional tumor cells that failed to be sensitized by PAM were incapable of activating gammadelta T cells by the treatment with 2-methy-3-butenyl-1-pyrophosphate either, suggesting a requirement of host factor(s) for the effective gammadelta T cell activation in addition to the nonpeptide Ags. By screening mAbs against a large panel of tumor cell lines, we found that the expression of CD166 closely paralleled the capacity of activating gammadelta T cells upon PAM treatment. The transfection of a CD166-negative tumor cell line with CD166 cDNA caused a marked enhancement of the capacity to activate gammadelta T cells following PAM treatment. On the contrary, down-regulation of the CD166 expression in a CD166-bearing tumor cell line by short hairpin RNA resulted in a significant reduction of PAM-induced gammadelta T cell-stimulatory activity. gammadelta T cells expressed CD6, a receptor of CD166, and CD6 and CD166 were recruited together to the center of synapse between gammadelta T cells and PAM-treated tumor cells, colocalizing with gammadelta TCR/CD3. The results suggested that the engagement of CD6 with CD166 on tumor cells played an important role in the gammadelta T cell activation by the tumor cells loaded with nonpeptide Ags either endogenously or exogenously.  相似文献   

11.
Killer Ig-like receptors (KIR) are commonly found on human NK cells, gammadelta T cells, and CD8 T cells. Although KIR(+) CD4 T cells are found in certain patients, their prevalence in healthy donors is controversial. We now provide definitive proof that such cells are present in most individuals, and report on their frequency, surface phenotype, cytokine profile, and Ag specificity. The number of KIR(+) CD4 T cells detected in peripheral blood increased with age. In contrast with regular KIR(-) CD4 T cells, the majority of KIR(+) CD4 T cells lacked surface expression of CD27, CD28, CCR4, and CCR7, but did express CD57 and 2B4. In addition, KIR were detected on approximately one-tenth of CD28(-) and CD57(+) memory CD4 T cells. In line with the absence of the Th2 marker CCR4, the KIR(+) CD4 cells produced mainly IFN-gamma and little IL-4, IL-10, or IL-17 upon TCR triggering. Furthermore, the KIR(+) population contained cells that responded to recall Ags in an HLA class II-restricted fashion. Together, our data indicate that KIR-expressing CD4 T cells are predominantly HLA class II-restricted effector memory Th1 cells, and that a significant, previously unrecognized fraction of effector memory Th1 cells expresses KIR.  相似文献   

12.
There are two major subsets of gammadelta T cell in humans. Vgamma2Vdelta2 T cells predominate in the circulation and significantly expand in vivo during a variety of infectious diseases. Ags identified for the Vdelta2 T cells are nonpeptide phosphate, amine, and aminobisphosphonate compounds. In contrast, Vdelta1-encoded TCRs account for the vast majority of gammadelta T cells in tissues such as intestine and spleen. Some of these T cells recognize CD1c and MHC class I-related chain (MICA/B) molecules [correction]. These T cells are cytotoxic and use both perforin- and Fas-mediated cytotoxicity. A fundamental question is how these gammadelta T cells are activated during microbial exposure to carry out effector functions. In this study, we provide evidence for a mechanism by which Vdelta1 gammadelta T cells are activated by inflammatory cytokines in the context of the Vdelta1 TCR. Dendritic cells are necessary as accessory cells for microbial Ag-mediated Vdelta1 gammadelta T cell activation. Cytokine (IL-12), adhesion (LFA3/CD2, LFA1/ICAM1) and costimulatory (MHC class I-related chain (MICA/B) molecules/NK-activating receptor G2D) molecules play a significant role along with Vdelta1 TCR in this activation.  相似文献   

13.
Mammalian and avian CD3+ T cells can be separated into two lymphocyte subsets bearing heterodimeric T-cell receptors (TCR) composed of either alphabeta or gammadelta chains. Although it is now widely accepted that gammadelta and alphabeta T cells fulfill mandatory and nonredundant roles, the generality of this assumption and the exact functions played by gammadelta T cells remain uncertain. While an early protective role of gammadelta T cells has long been suspected, recent observations drawn in particular from transgenic models suggest their implication in the homeostatic control of immune and nonimmune processes. This hypothesis is also supported by the existence of several self-reactive gammadelta T-cell subsets in rodents and humans, whose specificity and effector properties will be detailed and discussed here. The present review will also describe several mechanisms that could allow efficient control of these self-reactive subsets while permitting expression of their regulatory and/or protective properties.  相似文献   

14.
Gammadelta T cells are primarily found in the gastrointestinal mucosa and play an important role in the first line of defense against viral, bacterial, and fungal pathogens. We sought to examine the impact of human immunodeficiency virus type 1 (HIV-1) infection on mucosal as well as peripheral blood gammadelta T-cell populations. Our results demonstrate that HIV-1 infection is associated with significant expansion of Vdelta1 and contraction of Vdelta2 cell populations in both the mucosa and peripheral blood. Such changes were observed during acute HIV-1 infection and persisted throughout the chronic phase, without apparent reversion after treatment with highly active antiretroviral therapy (HAART). Despite an increase in the expression of CCR9 and CD103 mucosal homing receptors on peripheral blood gammadelta T cells in infected individuals, mucosal and peripheral blood gammadelta T cells appeared to be distinct populations, as reflected by distinct CDR3 length polymorphisms and sequences in the two compartments. Although the underlying mechanism responsible for triggering the expansion of Vdelta1 gammadelta T cells remains unknown, HIV-1 infection appears to have a dramatic impact on gammadelta T cells, which could have important implications for HIV-1 pathogenesis.  相似文献   

15.
Using an adoptive transfer model of experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein (MBP)-reactive lymph node cells (LNC), we have shown that depletion of gammadelta T cells from LNC resulted in diminished severity of EAE in recipient mice, both clinically and histopathologically. The reduced potency of gammadelta T cell-depleted LNC to induce EAE correlated with decreased cell proliferation in response to MBP. The gammadelta T cell effect upon the threshold of MBP-induced LNC proliferation and EAE transfer was restored by reconstitution of gammadelta T cells derived from either MBP-immunized or naive mice, indicating that this effect was not Ag specific. The enhancing effect of gammadelta T cells on MBP-induced proliferation and EAE transfer required direct cell-to-cell contact with LNC. The gammadelta T cell effect upon the LNC response to MBP did not involve a change in expression of the costimulatory molecules CD28, CD40L, and CTLA-4 on TCRalphabeta(+) cells, and CD40, CD80, and CD86 on CD19(+) and CD11b(+) cells. However, depletion of gammadelta T cells resulted in significant reduction in IL-12 production by LNC. That gammadelta T cells enhanced the MBP response and severity of adoptive EAE by stimulating IL-12 production was supported by experiments showing that reconstitution of the gammadelta T cell population restored IL-12 production, and that gammadelta T cell depletion-induced effects were reversed by the addition of IL-12. These results suggest a role for gammadelta T cells in the early effector phase of the immune response in EAE.  相似文献   

16.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

17.
Airway hyperresponsiveness (AHR), a hallmark of asthma and several other diseases, can be modulated by gammadelta T cells. In mice sensitized and challenged with OVA, AHR depends on allergen-specific alphabeta T cells; but Vgamma1+ gammadelta T cells spontaneously enhance AHR, whereas Vgamma4+ gammadelta T cells, after being induced by airway challenge, suppress AHR. The activity of these gammadelta T cell modulators is allergen nonspecific, and how they develop is unclear. We now show that CD8 is essential for the development of both the AHR suppressor and enhancer gammadelta T cells, although neither type needs to express CD8 itself. Both cell types encounter CD8-expressing non-T cells in the spleen, and their functional development in an otherwise CD8-negative environment can be restored with transferred spleen cell preparations containing CD8+ dendritic cells (DCs), but not CD8+ T cells or CD8- DCs. Our findings suggest that CD8+ DCs in the lymphoid tissues enable an early step in the development of gammadelta T cells through direct cell contact. DC-expressed CD8 might take part in this interaction.  相似文献   

18.
In humans, innate immune recognition of mycobacteria, including Mycobacterium tuberculosis and bacillus Calmette-Guérin (BCG), is a feature of cells as dendritic cells (DC) and gammadelta T cells. In this study, we show that BCG infection of human monocyte-derived DC induces a rapid activation of Vgamma9Vdelta2 T cells (the major subset of gammadelta T cell pool in human peripheral blood). Indeed, in the presence of BCG-infected DC, Vgamma9Vdelta2 T cells increase both their expression of CD69 and CD25 and the production of TNF-alpha and IFN-gamma, in contrast to DC treated with Vgamma9Vdelta2 T cell-specific Ags. Without further exogenous stimuli, BCG-infected DC expand a functionally cytotoxic central memory Vgamma9Vdelta2 T cell population. This subset does not display lymph node homing receptors, but express a high amount of perforin. They are highly efficient in the killing of mycobacterial-infected primary monocytes or human monocytic THP-1 cells preserving the viability of cocultured, infected DC. This study provides further evidences about the complex relationship between important players of innate immunity and suggests an immunoregulatory role of Vgamma9Vdelta2 T cells in the control of mycobacterial infection.  相似文献   

19.
20.
BACKGROUND: T cells undergo activation-induced cell death (AICD) through repeated stimulation of their T cell receptors (TCRs). Activated human gammadelta T cells were found to die by apoptosis when their TCRs were cross-linked by antibodies, whereas naïve gammadelta T cells freshly isolated from blood did not. Therefore, we investigated the factors that could contribute to this differential susceptibility. MATERIALS AND METHODS: Gammadelta T cells were isolated from the peripheral blood of healthy human volunteers and their TCRs were cross-linked either directly (naïve) or after an in vitro incubation of 11 days (activated). Their cell cycle profiles, cytokine, Fas and FasL mRNA messages, and surface expression of Fas and FasL were determined. RESULTS: The naïve cells were cycling while the activated T cells exited from the G1 to subG1 phase upon TCR cross-linking. IL-2 and IL-4 mRNAs and surface expression of FasL were detected only in activated T cells in the time period examined. In addition, cFLIP mRNA expression was found only in naïve gammadelta T cells and activated T cells treated with cyclosporin A (CsA), which inhibited AICD in the activated T cells. CsA also downregulated the surface expression of FasL in activated T cells. CONCLUSIONS: The differential expression of cytokines, apoptotic inducers and inhibitors provide the basis for the differential susceptibility of naïve and activated gammadelta T cells to AICD upon TCR cross-linking. This contributes to our understanding of the regulation and maintenance of gammadelta T-cell homeostasis, which would be important in many infectious as well as autoimmune diseases, where gammadelta T cells have been implicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号