首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, we demonstrate that soleus muscle of spontaneously hypertensive rats (SHR) had significantly lower protein levels of apoptosis repressor with caspase recruitment domain (ARC) and X-linked inhibitor of apoptosis protein (XIAP) as well as significantly higher protein levels of second mitochondria-derived activator of caspase (Smac) and procaspase-8 compared to normotensive Wistar-Kyoto (WKY) rats. In addition, soleus muscle from hypertensive rats had significantly increased caspase-8 proteolytic enzyme activity as well as significantly elevated reactive oxygen species (ROS) generation and higher hydrogen peroxide (H2O2) content. There was no change in the protein levels of the antioxidant enzymes, catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganese superoxide dismutase (MnSOD). Interestingly, ARC protein migrated at approximately 32 kDa in SHR but at 30 kDa in WKY rat muscle; possibly indicating a post-translational modification. These results demonstrate that soleus muscle of hypertensive rats display a pro-apoptotic phenotype and augmented ROS generation.  相似文献   

2.
The effect of external calf compression on baroreflex sensitivity (BRS) during electrically evoked plantar flexion and postexercise circulatory occlusion (PECO) was studied. Subjects took part in two experimental trials: control and compression. In both trials, electrically evoked isometric plantarflexion (Stim) was performed at 30% maximum voluntary contraction force for 2 min. During compression, a cuff (inflated to 250 mmHg) was applied to the active calf during exercise and PECO. Sequence analysis carried out on the systolic blood pressure responses, and R-wave-R-wave intervals revealed a rightward shift of the regression line along the pressure axis during Stim in both trials. In the control experiment, BRS was significantly (P < 0.01) increased from 10.37 +/- 1.87 ms/mmHg during Stim to 12.79 +/- 1.62 ms/mmHg during PECO. With external compression, BRS was unaltered between Stim (10.84 +/- 1.86 ms/mmHg) and PECO (11.40 +/- 1.54 ms/mmHg). Because the metabolic conditions were the same in both experiments, the results may best be explained by reactivation of muscle mechanoreceptor activity by external compression during PECO.  相似文献   

3.
4.
We investigated the effect of disuse atrophy on the magnitude of the muscle mechanoreflex. The left leg of eight rats (6-7 wk, male) was put in a plaster cast for 1 wk. The rats were decerebrated at the midcollicular level. We recorded the pressor and cardioaccelerator responses to 30-s stretch of the calcaneal tendon, which selectively stimulated the muscle mechanosensitive receptors in the left atrophied and right control triceps surae muscles. Atrophied muscles showed significantly lower mass control muscles (1.0 +/- 0.1 vs. 1.4 +/- 0.1 g; P < 0.05). At the same stretch tension (229 +/- 20 g), the pressor response to stretch was significantly greater in the atrophied muscles than in the control muscles (13 +/- 3 vs. 4 +/- 2 mmHg, P < 0.05). The cardioaccelerator response was not significantly different (8 +/- 4 vs. 4 +/- 2 beats/min). Comparing responses at the same relative tension (57 +/- 6 vs. 51 +/- 8% of maximal tension), the pressor response was still significantly greater in the atrophied triceps surae than in the control (14 +/- 4 vs. 4 +/- 2 mmHg; P < 0.05). These results suggest that disuse atrophy increases the magnitude of muscle mechanoreflex.  相似文献   

5.
This study was accomplished to determine the effects of chronic streptozotocin diabetes and insulin treatment on selected enzymes and substrates used in energy transduction in muscles composed of different muscle fiber types. Triglyceride concentration in all the muscles of diabetic rats was significantly elevated. Glycogen and protein concentrations were unchanged. The enzyme activities of hexokinase and alanine aminotransferase were significantly reduced and 3-hydroxyacyl-CoA dehydrogenase increased in all the muscles. Declines in phosphofructokinase, lactate dehydrogenase, citrate synthase, and succinate dehydrogenase activities were found in the red gastrocnemius and plantaris. Glycerol-3-phosphate dehydrogenase activity was lower than normal in the red gastrocnemius. Insulin treatment to the diabetic rats returned the altered triglyceride content and enzyme activities to normal, with exception of the lower alanine aminotransferase activity in the red gastrocnemius and plantaris. However, this enzyme was significantly ameliorated when compared with the untreated diabetic rats. The findings show that hypoinsulinism has a differential effect on the enzymatic profile of the different skeletal muscle fiber types, with those of the red gastrocnemius being most severely affected. Insulin treatment returned the enzymatic profile of the fiber types in diabetic rats to essentially normal.  相似文献   

6.
Summary The ultrastructure of fast-twitch-oxidative-glycolytic (FOG), fasttwitch-glycolytic (FG) and slow-twitch-oxidative (SO) fibers in plantaris and soleus muscles of normal and streptozotocin-diabetic rats was studied. In the diabetic animals, the mitochondria of FOG and SO fibers showed a loss of cristae and an increase in electron-dense granules. There was also an increased number of lipid droplets in close proximity to the mitochondria and the nuclei, and a separation of individual muscle nuclei to form satellite cells. Higher incidences of surface projections and sarcoplasmic splittings at the nuclear region were noticed in SO fibers. The FG fibers showed some disorientation of the T-tubular system. It is concluded that streptozotocin-diabetes has differential effects on the fine structure of the three fiber types of rat skeletal muscle.Supported by USPHS Grant AM 18280-04, Boston University Grant GRS-405-BI, and a grant-in-aid award from Sigma Xi Society  相似文献   

7.
8.
9.
The response of rat quadriceps muscle fibers to chronic streptozotocin (STZ) diabetes was studied. Transverse sections of rectus femoris muscle from diabetic and weight-matched control rats were assayed for myofibrilar adenosine triphosphatase (ATPase) and nicotinamide adenine dinucleotide-tetrazolium reductase (NADH-TR). A quantitative analysis was carried out by an automatic interactive analysis system focused on the fiber type size and distribution. STZ-induced diabetes caused important effects in this muscle, with changes in the distribution of oxidative enzyme reactions, type I fiber hypertrophy, and type II fiber atrophy, which was greater in type IIB than in type IIA. It is concluded that hypoinsulinism produces morphological alterations in proximal skeletal muscle fibers that are similar to those of neurogenic myopathy. Thus the pathological changes in these mammalian muscle fibers could explain the clinical syndrome seen in diabetic patients called "diabetic symmetrical proximal motor neuropathy," perhaps the least understood of the major neuropathic complications of diabetes.  相似文献   

10.
We examined muscle sympathetic nerve activity (MSNA) in thenonexercising lower limb during repetitive static quadricepscontraction paradigm at 25% maximal voluntary contraction in eightmen. Subjects performed 20-s contractions with 5-s rest periods for upto 12 contractions. Although the workload was constant, we found that MSNA amplitude rose as a function of contraction number [0.6 ln (amplitude/min)/contraction]; this suggests chemicalsensitization of the muscle reflex response. We employedsignal-averaging techniques and then integrated the data to examine theonset latency of the MSNA response as a function of the 25-scontraction-rest period. We observed an onset latency of ~4-6 s.Moreover, although the onset latency did not appear to vary as afunction of contraction number, the rate of MSNA increase tookapproximately four contractions to reach a steady-state rate of rise;this suggests contraction-induced sensitization. The onset latencyreported here is similar to findings in recent animal studies, but itis at odds with latencies determined in prior human handgripcontraction studies. We believe our data suggest that1) mechanically sensitive afferentscontribute importantly to the MSNA response to the paradigm employedand 2) these afferents may besensitized by the chemical products of muscle contraction.  相似文献   

11.
This study determined alterations to nitric oxide (NO)-dependent dilation of skeletal muscle arterioles from obese (OZR) versus lean Zucker rats (LZR). In situ cremaster muscle arterioles from both groups were viewed via television microscopy, and vessel dilation was measured with a video micrometer. Arteriolar dilation to acetylcholine and sodium nitroprusside was reduced in OZR versus LZR, although dilation to aprikalim was unaltered. NO-dependent flow-induced arteriolar dilation (via parallel microvessel occlusion) was attenuated in OZR, impairing arteriolar ability to regulate wall shear rate. Vascular superoxide levels, as assessed by dihydroethidine fluorescence, were elevated in OZR versus LZR. Treatment of cremaster muscles of OZR with the superoxide scavengers polyethylene glycol-superoxide dismutase and catalase improved arteriolar dilation to acetylcholine and sodium nitroprusside and restored flow-induced dilation and microvascular ability to regulate wall shear rate. These results suggest that NO-dependent dilation of skeletal muscle microvessels in OZR is impaired due to increased levels of superoxide. Taken together, these data suggest that the development of diabetes and hypertension in OZR may be associated with an impaired skeletal muscle perfusion via an elevated vascular oxidant stress.  相似文献   

12.
MARCKS (Myristoylated Alanine Rich C Kinase Substrate) is a protein known to cross-link actin filament and consequently, is very important in the stabilization of the cytoskeletal structure. In addition, it has been recently demonstrated that the phosphorylation rate of this protein changes during myogenesis and that this protein is implicated in fusion events. For a better understanding of the biological function of MARCKS during myogenesis, we have undertaken to identify and purify this protein from rabbit skeletal muscle. Three chromatographic steps including an affinity calmodulin-agarose column were performed. The existence of a complex between the two proteins was confirmed by non-denaturing gel electrophoresis and immunoprecipitation. Two complexes were isolated which present an apparent molecular weight of about 600 kDa. Such interactions suggest that MARCKS is either a very good PKCalpha substrate and/or a regulator of PKC activity. These results are supported by previous studies showing preferential interactions and co-localization of PKC isozyme and MARCKS at focal adhesion sites. This is the first time that MARCKS has been purified from skeletal muscle and our data are consistent with a major role of this actin- and calmodulin-binding protein in cytoskeletal rearrangement or other functions mediated by PKalpha. Our results provide evidence for a tight and specific association of MARCKS and PKCalpha (a major conventional PKC isozyme in skeletal muscle) as indicated by the co-purification of the two proteins.  相似文献   

13.
Ischemic exercise and the muscle metaboreflex.   总被引:1,自引:0,他引:1  
In exercising muscle, interstitial metabolites accumulate and stimulate muscle afferents. This evokes the muscle metaboreflex and raises arterial blood pressure (BP). In this report, we examined the effects of tension generation on muscle metabolites and BP during ischemic forearm exercise in humans. Heart rate (HR), BP, P(i), H(2)PO(4)(-), and pH ((31)P-NMR spectroscopy) data were collected in 10 normal healthy men (age 23 +/- 1 yr) during rhythmic handgrip exercise. After baseline measurements, the subjects performed rhythmic handgrip for 2 min. At 2 min, a 250-mmHg occlusion cuff was inflated, and ischemic handgrip exercise was continued until near fatigue (Borg 19). Measurements were continued for an additional 30 s of ischemia. This protocol was performed at 15, 30, 45, and 60% of the subjects' maximum voluntary contraction (MVC) in random order. As tension increased, the time to fatigue decreased. In addition, mean arterial pressure and HR were higher at 60% MVC than at any of the other lower tensions. The NMR data showed significantly greater increases in H(2)PO(4)(-), P(i), and H(+) at 60% than at 15 and 30% MVC. Therefore, despite the subjects working to the same perceived effort level, a greater reflex response (represented by BP and HR data) was elicited at 60% MVC than at any of the other ischemic tensions. These data are consistent with the hypothesis that, as tension increases, factors aside from insufficient blood flow contribute to the work effect on muscle metabolites and the magnitude of the reflex response.  相似文献   

14.
Male and female, spontaneously hypertensive rats (SHR) were treated with propranolol (14 weeks) when they became 1, 4 and 8 months old prior to, during the steep ascent, and when severe high blood pressure becomes established. Propranolol prevented the usual increase in blood pressure at an early age but did not effectively lower blood pressure at all age levels. Propranolol-treated SHR manifested marked alterations in pituitary, adrenal, thymus, heart and gonadal weights. Despite progressively increasing hyperlipidemia and hyperglycemia, there were no significant differences between lipid, glucose, BUN, or serum enzyme levels in treated vs nontreated SHR. Circulating aldosterone and corticosterone levels were reduced in propranolol-treated SHR. Male SHR, treated or untreated, developed severe cardiovascular-renal lesions when they became 8 months old; none of the female SHR manifested any pathologic changes. It is suggested that the anti-hypertensive effects of propranolol were partially mediated by hormonal as well as by hemodynamic mechanisms.  相似文献   

15.
Structural alterations of blood vessels in hypertensive rats   总被引:2,自引:0,他引:2  
Vascular changes in the mesenteric arteries were examined in three animals models for human essential hypertension. These models are: spontaneously hypertensive rats, which develop hypertension with age; Dahl model of genetic, salt-dependent hypertensive rats; and deoxycorticosterone-salt hypertensive rats. Morphometric measurements of the arterial wall components (e.g., endothelium, media) were carried out in the elastic arteries, muscular arteries, and arteriolar vessels from the mesenteric bed. The observed changes were correlated with the stages of hypertension development and the effect of antihypertension therapy, including sympathectomy. Specific emphasis was made to determine whether the changes observed were primary in nature, and related to the causes of hypertension, or they were secondary adaptive changes. A comparison of the three models showed that common changes in the intima, media, and adventitia were present in the three models. Alterations in the endothelium (e.g., enlargement of subendothelial space, necrotic changes), adventitia (collagen increase), and hypertrophy of the smooth muscle cells are secondary adaptive changes, because these changes occur subsequent to the development of hypertension, and antihypertensive therapy also prevent these changes from taking place. In contrast, hyperplasia of the smooth muscle cells is a primary change, because it occurs prior to the onset of hypertension. Functionally, alteration in the media is probably the most important change, because it can cause hyperreactivity of the arteries in response to stimulation. Damage to the endothelial cells may play a role in the maintenance of hypertension during the later phase. Alteration in adventitia is a passive change, which does not appear to have a major role in hypertension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The metabolic activity of the cremaster muscle, as measured by glucose oxidation, was lower (16.7%) in the spontaneously hypertensive rat (SHR) than in the normotensive Wistar-Kyoto rat (WKY). This alteration in metabolic activity was accompanied by a reduction of the respiratory rate (12.5%) in the SHR rats when compared to WKY animals. The decreased respiratory rate and the lowered metabolic activity of the cremaster muscle occured at a time when blood pressure is increasing in SHR animals.  相似文献   

17.
To have a clearer picture of how mitochondrial damages are associated to aging, a comprehensive study of phenotypic and genotypic alterations was carried out, analyzing with histochemical and molecular biology techniques the same skeletal muscle specimens of a large number of healthy subjects from 13 to 92 years old. Histochemical data showed that ragged red fibers (RRF) appear at about 40 years of age and are mostly cytochrome c oxidase (COX)-positive, whereas they are almost all COX-negative thereafter. Molecular analyses showed that the 4977 bp deletion of mitochondrial DNA (mtDNA(4977)) and the 7436 bp deletion of mtDNA (mtDNA(7436)) are already present in individuals younger than 40 years of age, but their occurrence does not change with age. After 40 years of age the number of mtDNA deleted species, as revealed by Long Extension PCR (LX-PCR), increases, the 10422 bp deletion of mtDNA (mtDNA(10422)) appears, although with a very low frequency of occurrence, and mtDNA content is more than doubled. Furthermore, mtDNA(4977) level directly correlates with that of COX-negative fibers in the same analyzed subjects. These data clearly show that, after 40 years of age, the phenotypic and genotypic mitochondrial alterations here studied appear in human skeletal muscle and that they are closely related.  相似文献   

18.
19.
20.
Apoptosis is a highly conserved process that plays an important role in controlling tissue development, homeostasis, and architecture. Dysregulation of apoptosis is a hallmark of numerous human pathologies including hypertension. In the present work we studied the effect of hypertension on apoptosis and the expression of several apoptotic signaling and/or regulatory proteins in four functionally and metabolically distinct muscles. Specifically, we examined these markers in soleus, red gastrocnemius, white gastrocnemius, and left ventricle (LV) of 20-wk-old normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Compared with WKY rats SHR had a significantly greater heart weight, LV weight, and mean arterial pressure. In general, SHR skeletal muscle had increased Bax protein, procaspase-3 protein, caspase-3 activity, cleaved poly(ADP-ribose) polymerase protein, and DNA fragmentation as well as decreased Bcl-2 protein and a lower Bcl-2-to-Bax ratio. Subcellular distribution studies demonstrated increased levels of apoptosis-inducing factor protein in cytosolic or nuclear extracts as well as elevated nuclear Bax protein in SHR skeletal muscle. Moreover, heat shock protein 70 in red gastrocnemius and soleus was significantly correlated to several apoptotic factors. With the exception of lower heat shock protein 90 levels in SHR no additional differences in any apoptotic markers were observed in LV between groups. Collectively, this report provides the first evidence that apoptotic signaling is altered in skeletal muscle of hypertensive animals, an effect that may be mediated by both caspase-dependent and -independent mechanisms. This proapoptotic state may provide some understanding for the morphological and functional abnormalities observed in skeletal muscle of hypertensive animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号