首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(6):801-806
Autophagy is a cellular process that has been defined and analyzed almost entirely by qualitative measures. In no small part, this is attributable to the absence of robust quantitative assays that can easily and reliably permit the progress of key steps in autophagy to be assessed. We have recently developed a cell-based assay that specifically measures proteolytic cleavage of a tripartite sensor protein by the autophagy protease ATG4B. Activation of ATG4B results in release of Gaussia luciferase from cells that can be non-invasively harvested from cellular supernatants. Here, we compare this technique to existing methods and propose that this type of assay will be suitable for genome-wide functional screens and in vivo analysis of autophagy.  相似文献   

2.
Autophagy is a catabolic cellular mechanism for entrapping cellular macromolecules and organelles in intracellular vesicles and degrading their contents by fusion with lysosomes. Important roles for autophagy have been elucidated for cell survival during nutrient insufficiency, eradication of intracellular pathogens, and counteracting aging through clearance of senescent proteins and mitochondria. Autophagic vesicles become decorated with LC3, a protein that mediates their fusion with lysosomes. LC3 is a substrate of the cysteine protease ATG4B (Autophagin-1), where cleavage generates a C-terminal glycine required for LC3 conjugation to lipids in autophagosomes. ATG4B both cleaves pro-LC3 and also hydrolyzes lipids from cleaved LC3. We show here that phosphorylation of ATG4B at Ser-383 and Ser-392 increases its hydrolyase activity as measured using LC3 as a substrate. Reconstituting atg4b−/− cells with phosphorylation-deficient ATG4B showed a role of ATG4B phosphorylation in LC3 delipidation and autophagic flux, thus demonstrating that the cellular activity of ATG4B is modulated by phosphorylation. Proteolytic conversion of pro-LC3 to LC3-I was not significantly impacted by ATG4B phosphorylation in cells. Phosphorylation-deficient ATG4B also showed reduced interactions with the lipid-conjugated LC3 but not unconjugated LC3. Taken together, these findings demonstrate a role for Ser-383 and Ser-392 phosphorylation of ATG4B in control of autophagy.  相似文献   

3.
ATG4B facilitates autophagy by promoting autophagosome maturation through the reversible lipidation and delipidation of LC3. Recent reports have shown that phosphorylation of ATG4B regulates its activity and LC3 processing, leading to modulate autophagy activity. However, the mechanism about how ATG4B phosphorylation is involved in amino acid deprivation-induced autophagy is unclear. Here, we combined the tandem affinity purification with mass spectrometry (MS) and identified the ATG4B-interacting proteins including its well-known partner gamma-aminobutyric acid receptor-associated protein (GABARAP, a homolog of LC3) and phosphofructokinase 1 platelet isoform (PFKP). Further immunoprecipitation assays showed that amino acid deprivation strengthened the interaction between ATG4B and PFKP. By genetic depletion of PFKP using CRISPR/Cas9, we uncovered that PFKP loss reduced the degradation of LC3-II and p62 due to a partial block in autophagic flux. Furthermore, MS analysis of Flag-tagged ATG4B immunoprecipitates identified phosphorylation of ATG4B serine 34 residue (S34) and PFKP serine 386 residue (S386) under amino acid deprivation condition. In vitro kinase assay validated that PFKP functioning as a protein kinase phosphorylated ATG4B at S34. This phosphorylation could enhance ATG4B activity and p62 degradation. In addition, PFKP S386 phosphorylation was important to ATG4B S34 phosphorylation and autophagy in HEK293T cells. In brief, our findings describe that PFKP, a rate-limiting enzyme in the glycolytic pathway, functions as a protein kinase for ATG4B to regulate ATG4B activity and autophagy under amino acid deprivation condition.  相似文献   

4.
Autophagy can either promote or inhibit cell death in different cellular contexts. In this study, we investigated the role of autophagy in ATG5 knockout (KO) cell line established using CRISPR/Cas9 system. In ATG5 KO cells, RT‐PCR and immunoblot of LC3 confirmed the functional gene knockout. We found that knockout of ATG5 significantly increased proliferation of NIH 3T3 cells. In particular, autophagy deficiency enhanced susceptibility to cellular transformation as determined by an in vitro clonogenic survival assay and a soft agar colony formation assay. We also found that ATG5 KO cells had a greater migration ability as compared to wild‐type (WT) cells. Moreover, ATG5 KO cells were more resistant to treatment with a Src family tyrosine kinase inhibitor (PP2) than WT cells were. Cyto‐ID Green autophagy assay revealed that PP2 failed to induce autophagy in ATG5 KO cells. PP2 treatment decreased the percentage of cells in the S and G2/M phases among WT cells but had no effect on cell cycle distribution of ATG5 KO cells, which showed a high percentage of cells in the S and G2/M phases. Additionally, the proportion of apoptotic cells significantly decreased after treatment of ATG5 KO cells with PP2 in comparison with WT cells. We found that expression levels of p53 were much higher in ATG5 KO cells. The ATG5 KO seems to lead to compensatory upregulation of the p53 protein because of a decreased apoptosis rate. Taken together, our results suggest that autophagy deficiency can lead to malignant cell transformation and resistance to PP2.  相似文献   

5.
细胞自噬是一种重要且保守的细胞内降解过程,通过形成双层膜的自噬体包裹细胞内容物进行降解。内质网来源的COPII囊泡被认为是饥饿诱导的应激过程中自噬体的膜源。探究了COPII囊泡衣被蛋白SEC24A在巨自噬通路中的作用。利用siRNA干扰技术敲低SEC24A的表达,EBSS饥饿处理对照组和SEC24A敲低组HeLa细胞2 h诱导自噬发生,经Western blot和免疫荧光实验检测自噬底物蛋白p62和自噬标志蛋白LC3-II的蛋白水平变化,以确定SEC24A是否参与自噬。通过RFP-GFP-LC3串联荧光检测自噬体和自噬溶酶体的数目,利用蛋白酶K保护实验验证自噬缺陷发生在自噬体闭合之前或者之后,利用免疫荧光实验检测敲低SEC24A对自噬通路上ATG复合物的影响,以确定SEC24A调控自噬通路的位点。通过免疫共沉淀实验验证SEC24A与自噬相关蛋白ATG9A是否存在相互作用。蛋白检测实验发现,饥饿条件下与对照细胞相比,敲低SEC24A细胞内自噬底物蛋白p62积累,而标志蛋白LC3-II减少。RFP-GFP-LC3串联荧光实验显示,敲低SEC24A后自噬体及自噬溶酶体的数目均减少。蛋白酶K保护实验显示,SEC24A敲低细胞中受膜结构保护的p62和GFP-LC3均减少,提示SEC24A作用位点在自噬体闭合之前。免疫荧光实验显示,敲低SEC24A的表达后ATG14L、ATG16L1点状结构减少,而ATG9A点状结构的数量没有明显变化,提示SEC24A作用于ATG14L、ATG16L1上游。免疫共沉淀实验显示SEC24A与ATG9A存在相互作用。研究结果不仅有助于深化对自噬体形成过程和分子机制的了解,也为全面解读COPII囊泡及其衣被蛋白在自噬中的重要作用提供了信息。  相似文献   

6.
Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pigmentary disorders, the mechanistic relationship between the 2 pathways has not been elucidated. In this study, we show that autophagic proteins LC3B and ATG4B mediate melanosome trafficking on cytoskeletal tracks. While studying melanogenesis, we observed spatial segregation of LC3B-labeled melanosomes with preferential absence at the dendritic ends of melanocytes. This LC3B labeling of melanosomes did not impact the steady-state levels of these organelles but instead facilitated their intracellular positioning. Melanosomes primarily traverse on microtubule and actin cytoskeletal tracks and our studies reveal that LC3B enables the assembly of microtubule translocon complex. At the microtubule-actin crossover junction, ATG4B detaches LC3B from melanosomal membranes by enzymatic delipidation. Further, by live-imaging we show that melanosomes transferred to keratinocytes lack melanocyte-specific LC3B. Our study thus elucidates a new role for autophagy proteins in directing melanosome movement and reveal the unconventional use of these proteins in cellular trafficking pathways. Such crosstalk between the central cellular function and housekeeping pathway may be a crucial mechanism to balance melanocyte bioenergetics and homeostasis.  相似文献   

7.
Autophagy is reported to suppress tumor proliferation, whereas deficiency of autophagy is associated with tumorigenesis. ATG4B is a deubiquitin-like protease that plays dual roles in the core machinery of autophagy; however, little is known about the role of ATG4B on autophagy and proliferation in tumor cells. In this study, we found that ATG4B knockdown induced autophagic flux and reduced CCND1 expression to inhibit G1/S phase transition of cell cycle in colorectal cancer cell lines, indicating functional dominance of ATG4B on autophagy inhibition and tumor proliferation in cancer cells. Interestingly, based on the genetic and pharmacological ablation of autophagy, the growth arrest induced by silencing ATG4B was independent of autophagic flux. Moreover, dephosphorylation of MTOR was involved in reduced CCND1 expression and G1/S phase transition in both cells and xenograft tumors with depletion of ATG4B. Furthermore, ATG4B expression was significantly increased in tumor cells of colorectal cancer patients compared with adjacent normal cells. The elevated expression of ATG4B was highly correlated with CCND1 expression, consistently supporting the notion that ATG4B might contribute to MTOR-CCND1 signaling for G1/S phase transition in colorectal cancer cells. Thus, we report that ATG4B independently plays a role as a positive regulator on tumor proliferation and a negative regulator on autophagy in colorectal cancer cells. These results suggest that ATG4B is a potential biomarker and drug target for cancer therapy.  相似文献   

8.
9.
《Autophagy》2013,9(8):1454-1465
Autophagy is reported to suppress tumor proliferation, whereas deficiency of autophagy is associated with tumorigenesis. ATG4B is a deubiquitin-like protease that plays dual roles in the core machinery of autophagy; however, little is known about the role of ATG4B on autophagy and proliferation in tumor cells. In this study, we found that ATG4B knockdown induced autophagic flux and reduced CCND1 expression to inhibit G1/S phase transition of cell cycle in colorectal cancer cell lines, indicating functional dominance of ATG4B on autophagy inhibition and tumor proliferation in cancer cells. Interestingly, based on the genetic and pharmacological ablation of autophagy, the growth arrest induced by silencing ATG4B was independent of autophagic flux. Moreover, dephosphorylation of MTOR was involved in reduced CCND1 expression and G1/S phase transition in both cells and xenograft tumors with depletion of ATG4B. Furthermore, ATG4B expression was significantly increased in tumor cells of colorectal cancer patients compared with adjacent normal cells. The elevated expression of ATG4B was highly correlated with CCND1 expression, consistently supporting the notion that ATG4B might contribute to MTOR-CCND1 signaling for G1/S phase transition in colorectal cancer cells. Thus, we report that ATG4B independently plays a role as a positive regulator on tumor proliferation and a negative regulator on autophagy in colorectal cancer cells. These results suggest that ATG4B is a potential biomarker and drug target for cancer therapy.  相似文献   

10.
During macroautophagy/autophagy, mammalian Atg8-family proteins undergo 2 proteolytic processing events. The first exposes a COOH-terminal glycine used in the conjugation of these proteins to lipids on the phagophore, the precursor to the autophagosome, whereas the second releases the lipid. The ATG4 family of proteases drives both cleavages, but how ATG4 proteins distinguish between soluble and lipid-anchored Atg8 proteins is not well understood. In a fully reconstituted delipidation assay, we establish that the physical anchoring of mammalian Atg8-family proteins in the membrane dramatically shifts the way ATG4 proteases recognize these substrates. Thus, while ATG4B is orders of magnitude faster at processing a soluble unprimed protein, all 4 ATG4 proteases can be activated to similar enzymatic activities on lipid-attached substrates. The recognition of lipidated but not soluble substrates is sensitive to a COOH-terminal LIR motif both in vitro and in cells. We suggest a model whereby ATG4B drives very fast priming of mammalian Atg8 proteins, whereas delipidation is inherently slow and regulated by all ATG4 homologs.  相似文献   

11.
Hydrogen sulfide is a signaling molecule that regulates essential processes in plants, such as autophagy. In Arabidopsis (Arabidopsis thaliana), hydrogen sulfide negatively regulates autophagy independently of reactive oxygen species via an unknown mechanism. Comparative and quantitative proteomic analysis was used to detect abscisic acid-triggered persulfidation that reveals a main role in the control of autophagy mediated by the autophagy-related (ATG) Cys protease AtATG4a. This protease undergoes specific persulfidation of Cys170 that is a part of the characteristic catalytic Cys-His-Asp triad of Cys proteases. Regulation of the ATG4 activity by persulfidation was tested in a heterologous assay using the Chlamydomonas reinhardtii CrATG8 protein as a substrate. Sulfide significantly and reversibly inactivates AtATG4a. The biological significance of the reversible inhibition of the ATG4 by sulfide is supported by the results obtained in Arabidopsis leaves under basal and autophagy-activating conditions. A significant increase in the overall ATG4 proteolytic activity in Arabidopsis was detected under nitrogen starvation and osmotic stress and can be inhibited by sulfide. Therefore, the data strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4 protease.  相似文献   

12.
验证从三白草中提取的两个化合物XGN56和XGN59对自噬关键蛋白ATG4B酶活性的影响及对自噬的调节作用。分子对接的方法验证化合物与游离ATG4B及ATG4B-LC3复合体的氢键结合作用;SDS-PAGE法及荧光共振能量转移法(FRET)测定化合物(10μmol/L)抑制ATG4B的IC50值;LC3融合GFP荧光标签检测化合物(10μmol/L)对LC3荧光聚集的影响,并设置正常组、给药组和药物联用Baf(0.5μmol/L)组;过表达GFP-LC3的WT-MEF及ATG5-/--MEF细胞检测化合物诱导LC3荧光点的情况。结果显示,XGN56和XGN59能分别与游离ATG4B和ATG4B-LC3复合体形成氢键作用,且两者均能剂量依赖地抑制ATG4B的酶切活性,体外IC50分别为7.74μmol/L和8.00μmol/L,同时能够ATG5依赖地促进GFP标记的自噬体的生成(P<0.001)。结果表明,两个化合物可能是通过一定程度地抑制ATG4B的酶活性从而促进细胞自噬水平。  相似文献   

13.
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein–protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.  相似文献   

14.
Acute lung injury (ALI) is a life-threatening medical condition with higher mortality and morbidity in elderly patients. Recently, metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, has been shown to be an effective anti-inflammatory agent in ALI. However, the mechanism of this regulation still remains poorly understood. In our study, we found that epithelial cell senescence was elevated after lipopolysaccharide (LPS) exposure in vivo and in vitro, accompanied by decreased expression of ATG5 and impaired autophagy activity. To further discover the molecular regulation mechanism between cellular senescence and autophagy in LPS-treated MLE-12 cells, we demonstrated that inhibition of ATG5 could decrease autophagy levels and promote the senescence of MLE-12 cells. On the contrary, elevating the expression of ATG5 could effectively suppress LPS-induced cellular senescence via enhancing autophagy activity. In addition, we demonstrated that metformin could protect MLE-12 cells from LPS-induced senescence via increasing the expression of ATG5 and augmenting autophagy activity. Our data implicate that activation of autophagy by metformin may provide a preventive and therapeutic strategy for ALI.  相似文献   

15.
The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagy-related 4B, cysteine peptidase/autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase in parallel with the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b−/− mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohn disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b−/− mice. Taken together, these results provided additional evidence for the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency.  相似文献   

16.
《Autophagy》2013,9(11):2021-2035
Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.  相似文献   

17.
Dysfunctional macroautophagy/autophagy has been causatively linked to aging and the pathogenesis of many diseases, which are also broadly characterized by dysregulated cellular redox. As the autophagy-related (ATG) conjugation systems that mediate autophagosome maturation are cysteine dependent, their oxidation may account for loss in this catabolic process under conditions of oxidative stress. During active autophagy, LC3 is transferred from the catalytic thiol of ATG7 to the active site thiol of ATG3, where it is conjugated to phosphatidylethanolamine. In our recent study, we show LC3 is bound to the catalytic thiols of inactive ATG3 and ATG7 through a stable thioester, which becomes transient upon autophagy stimulation. Transient interaction with LC3 exposes the catalytic thiols on ATG3 and ATG7, which under pro-oxidizing conditions undergo inhibitory oxidation. This process was found to be upregulated in aged mouse tissue and therefore may account, at least in part, for impaired autophagy observed during aging.  相似文献   

18.
Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.  相似文献   

19.

Background

Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses.

Methods

In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~ 30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time- and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein-light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and Western blotting of autophagy marker proteins LC3B, beclin1 and ATG5. Further, inhibition of autophagy by 3-MA decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, de-phosphorylation of Bad and increased cleavage product of caspase 3. siRNA mediated inhibition of autophagy related gene beclin1 also demonstrated similar results. Finally induction of apoptosis by 3-MA in CuO NP treated cells was observed by TEM.

Results

This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NP mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis.

Conclusions

A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells.

General significance

CuO NP induced autophagy is a survival strategy of MCF7 cells and inhibition of autophagy renders cellular fate to apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号