首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liang C  Feng P  Ku B  Oh BH  Jung JU 《Autophagy》2007,3(1):69-71
Autophagy has a well-documented role in the maintenance of homeostasis and the response to stressful environments and it is often deregulated in various human diseases including cancer. The regulation of the Beclin 1-PI3KC3 complex lipid kinase activity is a critical element in the autophagy signaling pathway. Previous studies(1) have demonstrated that Beclin 1-PI3KC3-mediated autophagy is negatively regulated by a proto-oncogene Bcl-2. We have recently identified a novel coiled-coil UVRAG tumor suppressor candidate, which positively engages in Beclin 1-dependent autophagy. UVRAG interacts with Beclin 1, leading to activation of autophagy and thereof inhibition of tumorigenesis. This finding adds a new player to the emerging picture of the autophagy network, under-scoring the importance of the coordinated activity between Bcl-2 and UVRAG in the regulation of Beclin 1-PI3KC3-mediated autophagy and tumor cell control.  相似文献   

2.
《Autophagy》2013,9(1):69-71
Autophagy has a well-documented role in the maintenance of homeostasis and the response to stressful environments and it is often deregulated in various human diseases including cancer. The regulation of the Beclin 1-PI3KC3 complex lipid kinase activity is a critical element in the autophagy signaling pathway. Previous studies1 have demonstrated that Beclin 1-PI3KC3-mediated autophagy is negatively regulated by a proto-oncogene Bcl-2. We have recently identified a novel coiled-coil UVRAG tumor suppressor candidate, which positively engages in Beclin 1-dependent autophagy. UVRAG interacts with Beclin 1, leading to activation of autophagy and thereof inhibition of tumorigenesis. This finding adds a new player to the emerging picture of the autophagy network, underscoring the importance of the coordinated activity between Bcl-2 and UVRAG in the regulation of Beclin 1-PI3KC3- mediated autophagy and tumor cell control.

Addendum to:

Autophagic and Tumor Suppressor Activity of a Novel Beclin 1-Binding Protein UVRAG

Chengyu Liang, Pinghui Feng, Bonsu Ku, Iris Dotan, Dan Canaani, Byung-Ha Oh and Jae U. Jung

Nature Cell Biol 2006; 8:688-99  相似文献   

3.
Autophagy, the degradation of cytoplasmic components, is an evolutionarily conserved homeostatic process involved in environmental adaptation, lifespan determination and tumour development. The tumor suppressor Beclin1 is part of the PI(3) kinase class III (PI(3)KC3) lipid-kinase complex that induces autophagy. The autophagic activity of the Beclin1-PI(3)KC3 complex, however, is suppressed by Bcl-2. Here, we report the identification of a novel coiled-coil UV irradiation resistance-associated gene (UVRAG) as a positive regulator of the Beclin1-PI(3)KC3 complex. UVRAG, a tumour suppressor candidate that is monoallelically mutated at high frequency in human colon cancers, associates with the Beclin1-Bcl-2-PI(3)KC3 multiprotein complex, where UVRAG and Beclin1 interdependently induce autophagy. UVRAG-mediated activation of the Beclin1-PI(3)KC3 complex promotes autophagy and also suppresses the proliferation and tumorigenicity of human colon cancer cells. These results identify UVRAG as an essential component of the Beclin1-PI(3)KC3 lipid kinase complex that is an important signalling checkpoint for autophagy and tumour-cell growth.  相似文献   

4.
Levine B  Sinha S  Kroemer G 《Autophagy》2008,4(5):600-606
The essential autophagy protein and haplo-insufficient tumor suppressor, Beclin 1, interacts with several cofactors (Ambra1, Bif-1, UVRAG) to activate the lipid kinase Vps34, thereby inducing autophagy. In normal conditions, Beclin 1 is bound to and inhibited by Bcl-2 or the Bcl-2 homolog Bcl-X(L). This interaction involves a Bcl-2 homology 3 (BH3) domain in Beclin 1 and the BH3 binding groove of Bcl-2/Bcl-X(L). Other proteins containing BH3 domains, called BH3-only proteins, can competitively disrupt the interaction between Beclin 1 and Bcl-2/Bcl-X(L) to induce autophagy. Nutrient starvation, which is a potent physiologic inducer of autophagy, can stimulate the dissociation of Beclin 1 from its inhibitors, either by activating BH3-only proteins (such as Bad) or by posttranslational modifications of Bcl-2 (such as phosphorylation) that may reduce its affinity for Beclin 1 and BH3-only proteins. Thus, anti-apoptotic Bcl-2 family members and pro-apoptotic BH3-only proteins may participate in the inhibition and induction of autophagy, respectively. This hitherto neglected crosstalk between the core machineries regulating autophagy and apoptosis may redefine the role of Bcl-2 family proteins in oncogenesis and tumor progression.  相似文献   

5.
《Autophagy》2013,9(4):519-520
A multiprotein complex composed of Beclin 1, PI(3)KC3 and UVRAG promotes autophagosome formation, while this activity is suppressed by a cohort of antiapoptotic Bcl-2 family members. Recently, we showed that a viral Bcl-2 of murine γ-herpesvirus 68, known as M11, binds to Beclin 1 with markedly high affinity in comparison with cellular Bcl-2 or Bcl-XL that interacts with Beclin 1 weakly.1 Furthermore, the binding affinity directly correlated with the potency of inhibition of autophagosome formation in cells. Herein, we present additional data showing that Beclin 1 forms a large homo-oligomer, and this oligomerization is partly disrupted by the binding of M11. Oligomerized Beclin 1 is proposed to serve as a platform enabling a concerted action of many molecules of the associating proteins, including Bif-1 that could be directly involved in autophagosome biogenesis on membranes owing to its BAR domain.

Addendum to: Ku B, Woo J-S, Liang C, Lee K-H, Hong H-S, Xiaofei E, Kim K-S, Jung JU, Oh B-H. Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine γ-herpesvirus 68. PLoS Pathog 2008; 4:e25.  相似文献   

6.
Ku B  Woo JS  Liang C  Lee KH  Jung JU  Oh BH 《Autophagy》2008,4(4):519-520
A multiprotein complex composed of Beclin 1, PI(3)KC3 and UVRAG promotes autophagosome formation, while this activity is suppressed by a cohort of antiapoptotic Bcl-2 family members. Recently, we showed that a viral Bcl-2 of murine gamma-herpesvirus 68, known as M11, binds to Beclin 1 with markedly high affinity in comparison with cellular Bcl-2 or Bcl-X(L) that interacts with Beclin 1 weakly.(1) Furthermore, the binding affinity directly correlated with the potency of inhibition of autophagosome formation in cells. Herein, we present additional data showing that Beclin 1 forms a large homo-oligomer, and this oligomerization is partly disrupted by the binding of M11. Oligomerized Beclin 1 is proposed to serve as a platform enabling a concerted action of many molecules of the associating proteins, including Bif-1 that could be directly involved in autophagosome biogenesis on membranes owing to its BAR domain.  相似文献   

7.
Sinha S  Colbert CL  Becker N  Wei Y  Levine B 《Autophagy》2008,4(8):989-997
Gamma-herpesviruses (gammaHVs), including important human pathogens such as Epstein Barr virus, Kaposi's sarcoma-associated HV, and the murine gammaHV68, encode homologs of the antiapoptotic, cellular Bcl-2 (cBcl-2) to promote viral replication and pathogenesis. The precise molecular details by which these proteins function in viral infection are poorly understood. Autophagy, a lysosomal degradation pathway, is inhibited by the interaction of cBcl-2s with a key autophagy effector, Beclin 1, and can also be inhibited by gammaHV Bcl-2s. Here we investigate the gammaHV68 M11-Beclin 1 interaction in atomic detail, using biochemical and structural approaches. We show that the Beclin 1 BH3 domain is the primary determinant of binding to M11 and other Bcl-2s, and this domain binds in a hydrophobic groove on M11, reminiscent of the binding of different BH3 domains to other Bcl-2s. Unexpectedly, regions outside of, but contiguous with, the Beclin 1 BH3 domain also contribute to this interaction. We find that M11 binds to Beclin 1 more strongly than do KSHV Bcl-2 or cBcl-2. Further, the differential affinity of M11 for different BH3 domains is caused by subtle, yet significant, variations in the atomic details of each interaction. Consistent with our structural analysis, we find that Beclin 1 residues L116 and F123, and M11 residue pairs G86 + R87 and Y60 + L74, are required for M11 to bind to Beclin 1 and downregulate autophagy. Thus, our results suggest that M11 inhibits autophagy through a mechanism that involves the binding of the Beclin 1 BH3 domain in the M11 hydrophobic surface groove.  相似文献   

8.
Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP(3)R, PINK and survivin) to regulate the lipid kinase Vps-34 protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound to, and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1. Interestingly, caspase-mediated cleavage of Beclin 1 promotes crosstalk between apoptosis and autophagy. Beclin 1 dysfunction has been implicated in many disorders, including cancer and neurodegeneration. Here, we summarize new findings regarding the organization and function of the Beclin 1 network in cellular homeostasis, focusing on the cross-regulation between apoptosis and autophagy.  相似文献   

9.
Differential interactions between Beclin 1 and Bcl-2 family members   总被引:1,自引:0,他引:1  
Autophagy, a cellular degradation system, promotes both cell death and survival. The interaction between Bcl-2 family proteins and Beclin 1, a Bcl-2 interacting protein that promotes autophagy, can mediate crosstalk between autophagy and apoptosis. We investigated the interaction between anti-and pro-apoptotic Bcl-2 proteins with Beclin 1. Our results show that Beclin 1 directly interacts with Bcl-2, Bcl-x(L), Bcl-w and to a lesser extent with Mcl-1. Beclin 1 does not bind the pro-apoptotic Bcl-2 proteins. The interaction between Beclin 1 and the anti-apoptotic protein Bcl-x(L) was inhibited by BH3-only proteins, but not by multi-domain proteins. Sequence alignment and structural modeling suggest that Beclin 1 contains a putative BH3-like domain which may interact with the hydrophobic grove of Bcl-x(L). Mutation of the Beclin 1 amino acids predicted to mediate this interaction inhibited the association of Beclin 1 with Bcl-x(L). Our results suggest that BH3 only proapoptotic Bcl-2 proteins may modulate the interactions between Bcl-x(L) and Beclin 1.  相似文献   

10.
《Autophagy》2013,9(8):989-997
γ-Herpesviruses (γHVs), including important human pathogens such as Epstein Barr virus, Kaposi’s sarcoma-associated HV, and the murine γHV68, encode homologs of the anti-apoptotic, cellular Bcl-2 (cBcl-2) to promote viral replication and pathogenesis. The precise molecular details by which these proteins function in viral infection are poorly understood. Autophagy, a lysosomal degradation pathway, is inhibited by the interaction of cBcl-2s with a key autophagy effector, Beclin 1, and can also be inhibited by γHV Bcl 2s. Here we investigate the γHV68 M11-Beclin 1 interaction in atomic detail, using biochemical and structural approaches. We show that the Beclin 1 BH3 domain is the primary determinant of binding to M11 and other Bcl 2s, and this domain binds in a hydrophobic groove on M11, reminiscent of the binding of different BH3 domains to other Bcl-2s. Unexpectedly, regions outside of, but contiguous with, the Beclin 1 BH3 domain also contribute to this interaction. We find that M11 binds to Beclin 1 more strongly than do KSHV Bcl-2 or cBcl-2. Further, the differential affinity of M11 for different BH3 domains is caused by subtle, yet significant, variations in the atomic details of each interaction. Consistent with our structural analysis, we find that Beclin 1 residues L116 and F123, and M11 residue pairs G86+R87 and Y60+L74, are required for M11 to bind to Beclin 1 and down-regulate autophagy. Thus, our results suggest that M11 inhibits autophagy through a mechanism that involves the binding of the Beclin 1 BH3 domain in the M11 hydrophobic surface groove.  相似文献   

11.
Starvation induces autophagy to preserve cellular homeostasis in virtually all eukaryotic organisms. However, the mechanisms by which starvation induces autophagy are not completely understood. In mammalian cells, the antiapoptotic protein, Bcl-2, binds to Beclin 1 during nonstarvation conditions and inhibits its autophagy function. Here we show that starvation induces phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the nonstructured loop; Bcl-2 dissociation from Beclin 1; and autophagy activation. In contrast, viral Bcl-2, which lacks the phosphorylation site-containing nonstructured loop, fails to dissociate from Beclin 1 during starvation. Furthermore, the stress-activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, mediates starvation-induced Bcl-2 phosphorylation, Bcl-2 dissociation from Beclin 1, and autophagy activation. Together, our findings demonstrate that JNK1-mediated multisite phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. These findings define a mechanism that cells use to regulate autophagic activity in response to nutrient status.  相似文献   

12.
《Autophagy》2013,9(7):947-948
Beclin 1 is a critical component in the class III PI3 kinase complex (PI3KC3) that induces the formation of autophagosomes in mammalian systems. Autophagic triggers upregulate Beclin 1, which in turn binds to PI3KC3 or Bcl-XL to form complexes of Beclin 1-PI3KC3 or Beclin 1-Bcl-XL that are physically and functionally independent from each other. Contrary to the previous observations that Beclin 1 binding to Bcl-2 family members is apoptotic and antiautophagic, we found that autophagic trigger-induced Beclin 1-binding to Bcl-XL is antiapoptotic and has no effect on autophagy, suggesting a convertible role of the Beclin 1-Bcl-XL complex in response to autophagy stimuli. Both autophagy and differentiation cascades require upregulation of Beclin 1. While the basal Beclin 1 level does not cause autophagy or differentiation, depletion of Beclin 1 cripples both autophagy and differentiation capabilities, but activates apoptosis. These results demonstrate that Beclin 1 is essential for autophagy, differentiation and antiapoptosis, and may play an important role in coordinating inputs for cellular decisions to signaling machinery that mediates different cellular cascades.

Addendum to: Wang J, Lian H, Zhao Y, Kauss MA, Spindel S. Vitamin D3 induces autophagy of human myeloid leukemia cells. J Biol Chem 2008; doi:10.1074/jbc.  相似文献   

13.
Wang J 《Autophagy》2008,4(7):947-948
Beclin 1 is a critical component in the class III PI3 kinase complex (PI3KC3) that induces the formation of autophagosomes in mammalian systems. Autophagic triggers upregulate Beclin 1, which in turn binds to PI3KC3 or Bcl-X(L) to form complexes of Beclin 1-PI3KC3 or Beclin 1-Bcl-X(L) that are physically and functionally independent from each other. Contrary to the previous observations that Beclin 1 binding to Bcl-2 family members is apoptotic and antiautophagic, we found that autophagic trigger-induced Beclin 1-binding to Bcl-X(L) is antiapoptotic and has no effect on autophagy, suggesting a convertible role of the Beclin 1-Bcl-X(L) complex in response to autophagy stimuli. Both autophagy and differentiation cascades require upregulation of Beclin 1. While the basal Beclin 1 level does not cause autophagy or differentiation, depletion of Beclin 1 cripples both autophagy and differentiation capabilities, but activates apoptosis. These results demonstrate that Beclin 1 is essential for autophagy, differentiation and antiapoptosis, and may play an important role in coordinating inputs for cellular decisions to signaling machinery that mediates different cellular cascades.  相似文献   

14.
Kang R  Livesey KM  Zeh HJ  Loze MT  Tang D 《Autophagy》2010,6(8):1209-1211
The autophagosome delivers damaged cytoplasmic constituents and proteins to the lysosome or to the extracellular space. Beclin 1, an essential: autophagic protein, is a BH3-only protein that binds Bcl-2 anti-apoptotic family members and has a critical role in the initiation of autophagy. How the Beclin 1 complex specifically promotes autophagy remains largely unknown. We have found that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage associated molecular pattern molecule (DAMP), is a novel Beclin 1-binding protein important in sustaining autophagy. HMGB1 shares considerable sequence homology with Beclin 1 in yeast, mice and human, representing an evolutionarily conserved regulatory step in early autophagosome formation. Endogenous HMGB1 competes with Bcl-2 for interaction with Beclin 1, and orients Beclin 1 to autophagosomes. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin 1 and sustaining autophagy. Taken together, these findings indicate that endogenous HMGB1 functions as an autophagy effector by regulation of autophagosome formation.  相似文献   

15.
《Autophagy》2013,9(6):561-568
Autophagy, a cellular degradation system, promotes both cell death and survival. The interaction between Bcl-2 family proteins and Beclin 1, a Bcl-2 interacting protein that promotes autophagy, can mediate crosstalk between autophagy and apoptosis. We investigated the interaction between anti-and pro-apoptotic Bcl-2 proteins with Beclin 1. Our results show that Beclin 1 directly interacts with Bcl-2, Bcl-xL, Bcl-w and to a lesser extent with Mcl-1. Beclin 1 does not bind the pro-apoptotic Bcl-2 proteins. The interaction between Beclin 1 and the anti-apoptotic protein Bcl-xL was inhibited by BH3-only proteins, but not by multi-domain proteins. Sequence alignment and structural modeling suggest that Beclin 1 contains a putative BH3-like domain which may interact with the hydrophobic grove of Bcl-xL. Mutation of the Beclin 1 amino acids predicted to mediate this interaction inhibited the association of Beclin 1 with Bcl-xL. Our results suggest that BH3 only proapoptotic Bcl-2 proteins may modulate the interactions between Bcl-xL and Beclin 1.  相似文献   

16.
The anti-apoptotic Bcl-2 protein, which confers oncogenic transformation and drug resistance in most human cancers, including breast cancer, has recently been shown to effectively counteract autophagy by directly targeting Beclin1, an essential autophagy mediator and tumor suppressor. However, it remains unknown whether autophagy inhibition contributes to Bcl-2-mediated oncogenesis. Here, by using a loss-of-function mutagenesis study, we show that Bcl-2-mediated antagonism of autophagy has a critical role in enhancing the tumorigenic properties of MCF7 breast cancer cells independent of its anti-apoptosis activity. A Bcl-2 mutant defective in apoptosis inhibition but competent for autophagy suppression promotes MCF7 breast cancer cell growth in vitro and in vivo as efficiently as wild-type Bcl-2. The growth-promoting activity of this Bcl-2 mutant is strongly correlated with its suppression of Beclin1-dependent autophagy, leading to sustained p62 expression and increased DNA damage in xenograft tumors, which may directly contribute to tumorigenesis. Thus, the anti-autophagic property of Bcl-2 is a key feature of Bcl-2-mediated oncogenesis and may in some contexts, serve as an attractive target for breast and other cancer therapies.  相似文献   

17.
《Autophagy》2013,9(8):1209-1211
The autophagosome delivers damaged cytoplasmic constituents and proteins to the lysosome or to the extracellular space. Beclin 1, an essential

autophagic protein, is a BH3-only protein that binds Bcl-2 anti-apoptotic family members and has a critical role in the initiation of autophagy. How the Beclin 1 complex specifically promotes autophagy remains largely unknown. We have found that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage associated molecular pattern molecule (DAMP), is a novel Beclin 1-binding protein important in sustaining autophagy. HMGB1 shares considerable sequence homology with Beclin 1 in yeast, mice and human, representing an evolutionarily conserved regulatory step in early autophagosome formation. Endogenous HMGB1 competes with Bcl-2 for interaction with Beclin 1, and orients Beclin 1 to autophagosomes. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin 1 and sustaining autophagy. Taken together, these findings indicate that endogenous HMGB1 functions as an autophagy effector by regulation of autophagosome formation.  相似文献   

18.
《Autophagy》2013,9(6):880-881
Beclin 1 binds to Bcl-2 through its BH3 domain and this interaction inhibits starvation-induced autophagy. However, we have found that when Beclin 1 binds thus to Bcl-2, it fails to inhibit Bcl-2-mediated protection against four different inducers of apoptosis. In this punctum, we discuss possible reasons why Beclin 1 fails to behave like other BH3-only proteins and induce apoptosis.  相似文献   

19.
《Autophagy》2013,9(5):713-716
Class III phosphatidylinositol 3-kinase (PI3KC3) plays a pleiotropic role in autophagy and protein sorting pathways. The human core complex of PI3KC3 consists of three major components including PI3KC3/hVps34, p150 and Beclin 1. How the specificity of PI3KC3 complex is derived towards autophagy is not clear. Utilizing a sequential affinity purification coupled with Mass spectrometry approach, we have successfully purified a human Beclin 1 complex and cloned a novel protein we called Barkor (Beclin 1-associated autophagy-related key regulator). The function of Barkor in autophagy has been manifested in several assays, including stress-induced LC3 lipidation, autophagosome formation, and Salmonella typhimurium amplification. Mechanistically, Barkor competes with UV radiation resistance associated gene product (UVRAG) for interaction with Beclin 1, and orients Beclin1 to autophagosomes. Barkor shares considerable sequence homology with Atg14 in yeast, representing an evolutionary conserved autophagy specific regulatory step in early autophagosome formation.  相似文献   

20.
The Beclin 1-VPS34 complex plays a crucial role in the induction of the autophagic process by generating PtdIns(3)P-rich membranes, which act as platforms for ATG protein recruitment and autophagosome nucleation. Several cofactors, such as Ambra1, ATG14 and UVRAG, are necessary for Beclin 1 complex activity. However, the mechanism by which Beclin 1 complex activity is: stimulated by autophagic stimuli has not yet been fully elucidated. Recently, we reported that autophagosome formation in mammalian cells is primed by Ambra1 release from the dynein motor complex. We found that Ambra1 specifically binds the dynein motor complex under normal conditions through a direct interaction with DLC1. When autophagy is induced, Ambra1-DLC1 are released from the dynein complex in an ULK1-dependent manner, and relocalize to the endoplasmic reticulum, thus enabling autophagosome nucleation. In addition, we found that both DLC1 downregulation and Ambra1 mutations in its DLC1-binding sites strongly enhance autophagosome formation. Ambra1 is therefore not only a cofactor of Beclin 1 in favoring its kinase-associated activity, but also a crucial upstream regulator of autophagy initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号