首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To investigate the effects of aeration on the ex situ biodegradation of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil and its effect on the microbial community present. METHODS AND RESULTS: Aerated and nonaerated microcosms of soil excavated from a former timber treatment yard were maintained and sampled for PAH concentration and microbial community changes by terminal restriction fragment length polymorphism (TRFLP) analysis. After an experimental period of just 13 days, degradation was observed with all the PAHs monitored. Abiotic controls showed no loss of PAH. Results unexpectedly showed greater loss of the higher molecular weight PAHs in the nonaerated control. This may have been due to the soil excavation causing initial decompaction and aeration and the resulting changes caused in the microbial community composition, indicated by TRFLP analysis showing several ribotypes greatly increasing in relative abundance. Similar changes in both microcosms were observed but with several possible key differences. The species of micro-organisms putatively identified included Bacilli, pseudomonad, aeromonad, Vibrio and Clostridia species. CONCLUSIONS: Excavation of the contaminated soil leads to decompaction, aeration and increased nutrient availability, which in turn allow microbial biodegradation of the PAHs and a change in the microbial community structure. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding the changes occurring in the microbial community during biodegradation of all PAHs is essential for the development of improved site remediation protocols. TRFLP allows useful monitoring of the total microbial community.  相似文献   

2.
Different bioremediation techniques (natural attenuation, biostimulation and bioaugmentation) in contaminated soils with two oily sludge concentrations (1.5% and 6.0%) in open and closed microcosms systems were assessed during 90 days. The results showed that the highest biodegradation rates were obtained in contaminated soils with 6% in closed microcosms. Addition of microbial consortium and nutrients in different concentrations demonstrated higher biodegradation rate of total petroleum hydrocarbons (TPH) than those of the natural attenuation treatment. Soils treated in closed microcosms showed highest removal rate (84.1 ± 0.9%) when contaminated at 6% and bacterial consortium and nutrients in low amounts were added. In open microcosms, the soil contaminated at 6% using biostimulation with the highest amounts of nutrients (C:N:P of 100:10:1) presented the highest degradation rate (78.7 ± 1.3%). These results demonstrate that the application of microbial consortium and nutrients favored biodegradation of TPH present in oily sludge, indicating their potential applications for treatment of the soils impacted with this important hazardous waste.  相似文献   

3.
The effect of microbial inoculation on the mineralization of naphthalene in a bioslurry treatment was evaluated in soil slurry microcosms. Inoculation by Pseudomonas putida G7 carrying the naphthalene dioxygenase (nahA) gene resulted in rapid mineralization of naphthalene, whereas indigenous microorganisms in the PAH-contaminated soil required a 28 h adaptation period before significant mineralization occurred. The number of nahA-like gene copies increased in both the inoculated and non-inoculated soil as mineralization proceeded, indicating selection towards naphthalene dioxygenase producing bacteria in the microbial community. In addition, 16S rRNA analysis by denaturing gradient gel electrophoresis (DGGE) analysis showed that significant selection occurred in the microbial community as a result of biodegradation. However, the indigenous soil bacteria were not able to compete with the P. putida G7 inoculum adapted to naphthalene biodegradation, even though the soil microbial community slightly suppressed naphthalene mineralization by P. putida G7.  相似文献   

4.
Chromium (VI) is toxic to microorganisms and can inhibit the biodegradation of organic pollutants in contaminated soils. We used microcosms amended with either glucose or protein (to drive bacterial community change) and Fe(III) (to stimulate iron-reducing bacteria) to study the effect of various concentrations of Cr(VI) on anaerobic bacterial communities. Microcosms were destructively sampled based on microbial activity (measured as evolution of CO2) and analyzed for the following: (i) dominant bacterial community by PCR-denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene; (ii) culturable Cr-resistant bacteria; and (iii) enrichment of iron-reducing bacteria of the Geobacteraceae family by real-time PCR. The addition of organic C stimulated the activities of anaerobic communities. Cr(VI) amendment resulted in lower rates of CO2 production in glucose microcosms and a slow mineralization phase in protein-amended microcosms. Glucose and protein amendments selected for different bacterial communities. This selection was modified by the addition of Cr(VI), since some DGGE bands were intensified and new bands appeared in Cr(VI)-amended microcosms. A second dose of Cr(VI), added after the onset of activity, had a strong inhibitory effect when higher levels of Cr were added, indicating that the developing Cr-resistant communities had a relatively low tolerance threshold. Most of the isolated Cr-resistant bacteria were closely related to previously studied Cr-resistant anaerobes, such as Pantoea, Pseudomonas, and Enterobacter species. Geobacteraceae were not enriched during the incubation. The studied Cr(VI)-contaminated soil contained a viable anaerobic bacterial community; however, Cr(VI) altered its composition, which could affect the soil biodegradation potential.  相似文献   

5.
Chromium (VI) is toxic to microorganisms and can inhibit the biodegradation of organic pollutants in contaminated soils. We used microcosms amended with either glucose or protein (to drive bacterial community change) and Fe(III) (to stimulate iron-reducing bacteria) to study the effect of various concentrations of Cr(VI) on anaerobic bacterial communities. Microcosms were destructively sampled based on microbial activity (measured as evolution of CO2) and analyzed for the following: (i) dominant bacterial community by PCR-denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene; (ii) culturable Cr-resistant bacteria; and (iii) enrichment of iron-reducing bacteria of the Geobacteraceae family by real-time PCR. The addition of organic C stimulated the activities of anaerobic communities. Cr(VI) amendment resulted in lower rates of CO2 production in glucose microcosms and a slow mineralization phase in protein-amended microcosms. Glucose and protein amendments selected for different bacterial communities. This selection was modified by the addition of Cr(VI), since some DGGE bands were intensified and new bands appeared in Cr(VI)-amended microcosms. A second dose of Cr(VI), added after the onset of activity, had a strong inhibitory effect when higher levels of Cr were added, indicating that the developing Cr-resistant communities had a relatively low tolerance threshold. Most of the isolated Cr-resistant bacteria were closely related to previously studied Cr-resistant anaerobes, such as Pantoea, Pseudomonas, and Enterobacter species. Geobacteraceae were not enriched during the incubation. The studied Cr(VI)-contaminated soil contained a viable anaerobic bacterial community; however, Cr(VI) altered its composition, which could affect the soil biodegradation potential.  相似文献   

6.
AIMS: (i) To compare the effects of feeding protocols upon the composition and stability of dental plaque microcosms formed in constant-depth film fermenters (CDFF). (ii) To evaluate the utility of denaturing gradient gel electrophoresis (DGGE) and culture methodologies for the investigation of such models. METHODS AND RESULTS: Microcosms were established anaerobically in the CDFFs from freshly collected saliva. These were fed either with artificial saliva alone (famine) or combined with discontinuous feeding (feast-famine). Culture and 16s rDNA sequencing indicated that supplemental feeding gave ca. 2 log increases in Lactobacillus rhamnosus and Prevotella buccae. Feast-famine microcosms were then further characterized by DGGE using primers specific for the V2-V3 region of eubacterial rDNA. These gave single major bands with pure cultures (eight species) and resolved all strains apart from Lact. rhamnosus and Actinomyces naeslundii. Whilst culture with selective media indicated a degree of stability and reproducibility between replicate microcosms, DGGE showed a considerable degree of variability that related to several putatively uncultured bacteria. CONCLUSIONS: Feast-famine regimes altered community composition. DGGE analyses identified putatively unculturable species and demonstrated variability between replicate fermenters. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the utility of DGGE for the analysis of dental plaque, especially with respect to unculturable bacteria. Results question the assumptions of reproducibility of plaque microcosms established in non-replicated CDFFs made on the basis of selective media. Feeding regimes, particularly those involving complex nutrients, will dramatically affect population dynamics.  相似文献   

7.
AIM: To evaluate the rpoB gene as a biomarker for PCR-DGGE microbial analyses using soil DNA from the Cerrado, Brazil. METHODS: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. RESULTS: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAH; naphthalene, anthracene and phenanthrene) degrading microbial consortium C2PL05 was obtained from a sandy soil chronically exposed to petroleum products, collected from a petrochemical complex in Puertollano (Ciudad Real, Spain). The consortium C2PL05 was highly efficient degrading completely naphthalene, phenanthrene and anthracene in around 18 days of cultivation. The toxicity (Microtox™ method) generated by the PAH and by the intermediate metabolites was reduced to levels close to non-toxic in almost 40 days of cultivation. The identified bacteria from the contaminated soil belonged to γ-proteobacteria and could be include in Enterobacter and Pseudomonas genus. DGGE analysis revealed uncultured Stenotrophomonas ribotypes as a possible PAH degrader in the microbial consortium. The present work shows the potential use of these microorganisms and the total consortium for the bioremediation of PAH polluted areas since the biodegradation of these chemicals takes place along with a significant decrease in toxicity.  相似文献   

9.
Aims:  To investigate the feasibility of applying sorbent material X-Oil® in marine oil spill mitigation and to survey the interactions of oil, bacteria and sorbent.
Methods and Results:  In a series of microcosms, 25 different treatments including nutrient amendment, bioaugmentation with Alcanivorax borkumensis and application of sorbent were tested. Microbial community dynamics were analysed by DNA fingerprinting methods, RISA and DGGE. Results of this study showed that the microbial communities in microcosms with highly active biodegradation were strongly selected in favour of A. borkumensis . Oxygen consumption measurements in microcosms and gas chromatography of oil samples indicated the fast and intense depletion of linear alkanes as well as high oxygen consumption within 1 week followed by consequent slower degradation of branched and polyaromatic hydrocarbons.
Conclusion:  Under given conditions, A. borkumensis was an essential organism for biodegradation, dominating the biofilm microbial community formation and was the reason of emulsification.
Significance and Impact of the Study:  This study strongly emphasizes the pivotal importance of A. borkumensis as an essential organism in the initial steps of marine hydrocarbon degradation. Interaction with the sorbent material X-Oil® proved to be neutral to beneficial for biodegradation and also promoted the growth of yet unknown micro-organisms.  相似文献   

10.
This study investigates the effect of Fenton reagent on the structure and function of a microbial consortium during the anaerobic degradation of hexachloroethane (HCA) and tetrachloroethene (PCE). Anaerobic biodegradation tests of HCA and PCE were performed in batch reactors using an anaerobic microbial consortium that had been exposed to Fenton reagent for durations of 0, 0.04, and 2 days and then allowed to recover for periods of 0, 3, and 7 days. The bacterial community structure was determined using culture-independent methods of 16S rRNA gene sequencing and automated ribosomal intergenic spacer analysis. Larger recovery periods partially restored the microbial community structure; however, the recovery periods did not restore the loss of ability to degrade HCA and PCE in cultures shocked for 0.04 days, and PCE in cultures shocked for 2 days. Overall the exposure to Fenton reagent had an impact on bacterial community structure with downstream effects on HCA and PCE degradation. This study highlights that the impacts of short- and long-term shocks on microbial community structure and function can be correlated using a combination of biodegradation tests and community structure analysis tools.  相似文献   

11.
The effect of 2,4-dichlorophenoxyacetic acid (2,4-D) application rate on microbial community structure and on the diversity of dominant 2,4-D degrading bacteria in an agricultural soil was examined using cultivation-independent molecular techniques coupled with traditional isolation and enumeration methods. Fingerprints of microbial communities established under increasing concentrations of 2,4-D (0-500 mg kg-1) in batch soil microcosms were obtained using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments. While a 2,4-D concentration of at least 100 mg kg-1 was required to obtain an apparent change in the community structure as visualized by DGGE, the greatest impact of 2,4-D concentration occurred in the 500 mg kg-1 treatment, resulting in significantly reduced diversity of the dominant populations and enrichment by Burkholderia-like populations. The greatest diversity of 2,4-D degrading isolates was cultivated from the 10 mg kg-1 treatment, indicating that under these conditions, cultivation was more sensitive than DGGE for detecting changes in community structure. Most of these isolates harbored homologs of Ralstonia eutrophus JMP134 and Burkholderia cepacia tfdA catabolic genes. Results from this study revealed that agriculturally relevant application rates of 2,4-D may provide a temporary selective advantage for organisms capable of utilizing 2,4-D as a carbon and energy source.  相似文献   

12.
Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.  相似文献   

13.
The activation of natural bioremediation potentials is the challenge that research is currently addressing for overcoming bottlenecks still affecting bioremediation applications. Bioaugmentation is one possible way to activate such natural potentials, provided that the biodiversity introduced to increase catabolically relevant capacity is identified also considering the ecological context. The present work deals with bioaugmentation aimed at the remediation of a soil co-contaminated (spiked) with both diesel oil (1%, v/w), and heavy metals (Pb and Zn), using intact soil core microcosms in different experimental conditions. We supposed that both heavy metal resistance and active metabolism towards organic pollutants are essential metabolic traits to trap the energetic flux, which drives the microbial community towards biodegradation under the given experimental conditions. Consequently, the bioaugmentation was performed by introducing a tailor made microbial formula composed of 12 allochthonous strains. They belong to a stable population previously isolated from a chronic polluted site and are both hydrocarbon degraders and heavy metal resistant and, also, compatible with the autochthonous microbial community. The active role of the microbial formula in pushing the entire community towards an effective bioremediation of diesel oil close to 75%, in the presence of bioavailable metals, has been proven through hydrocarbons analysis, metabolic and molecular profiling at community level (Biolog system, DGGE).  相似文献   

14.
Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.  相似文献   

15.
2,4,6-Trinitrotoluene (TNT) is a toxic and persistent explosive compound occurring as a contaminant at numerous sites worldwide. Knowledge of the microbial dynamics driving TNT biodegradation is limited, particularly in native aquifer sediments where it poses a threat to water resources. The purpose of this study was to quantify the effect of organic amendments on anaerobic TNT biodegradation rate and pathway in an enrichment culture obtained from historically contaminated aquifer sediment and to compare the bacterial community dynamics. TNT readily biodegraded in all microcosms, with the highest biodegradation rate obtained under the lactate amended condition followed by ethanol amended and naturally occurring organic matter (extracted from site sediment) amended conditions. Although a reductive pathway of TNT degradation was observed across all conditions, denaturing gradient gel electrophoresis (DGGE) analysis revealed distinct bacterial community compositions. In all microcosms, Gram-negative γ- or β-Proteobacteria and Gram-positive Negativicutes or Clostridia were observed. A Pseudomonas sp. in particular was observed to be stimulated under all conditions. According to non-metric multidimensional scaling analysis of DGGE profiles, the microcosm communities were most similar to heavily TNT-contaminated field site sediment, relative to moderately and uncontaminated sediments, suggesting that TNT contamination itself is a major driver of microbial community structure. Overall these results provide a new line of evidence of the key bacteria driving TNT degradation in aquifer sediments and their dynamics in response to organic carbon amendment, supporting this approach as a promising technology for stimulating in situ TNT bioremediation in the subsurface.  相似文献   

16.
To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1–2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.  相似文献   

17.
Ka JO  Yu Z  Mohn WW 《Microbial ecology》2001,42(3):267-273
Efforts to understand and improve soil bioremediation are limited by our ability to determine how treatment variables affect microbial communities. A method was developed to monitor the density and metabolic activity of the total bacterial community in soil. This method was used to monitor the bacterial community in microcosms of Arctic soil after addition of N plus P to stimulate biodegradation of hydrocarbon contaminants. During 29 days of incubation, the total petroleum hydrocarbon level in the soil was reduced from 850 to 360 mg/g of soil. DNA and RNA were extracted from soil using a bead beating method, purified by ammonium acetate precipitation, and assayed by competitive PCR and RT-PCR assays with universal bacterial primers. The copy number of 16S rDNA in the soil microbial community was relatively stable and ranged from 1.7 × 109 to 4.5 × 109/g of soil throughout the incubation. The copy number of 16S rRNA changed substantially and ranged from 5.6 × 1010 to 1.0 × 1012/g of soil. The rRNA:rDNA ratio was highest during the phase of fastest hydrocarbon biodegradation. These results suggest that the treatment to stimulate hydrocarbon biodegradation did not substantially change the density of the bacterial community but did transiently increase its overall metabolic activity.  相似文献   

18.
s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50?μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils.  相似文献   

19.
Analysing the consequences of the decrease in biodiversity for ecosystem functioning and stability has been a major concern in ecology. However, the impact of decline in soil microbial diversity on ecosystem sustainability remains largely unknown. This has been assessed for decomposition, which is insured by a large proportion of the soil microbial community, but not for more specialized and less diverse microbial groups. We determined the impact of a decrease in soil microbial diversity on the stability (i.e. resistance and resilience following disturbance) of two more specialized bacterial functional groups: denitrifiers and nitrite oxidizers. Soil microbial diversity was reduced using serial dilutions of a suspension obtained from a non-sterile soil that led to loss of species with low cell abundance, inoculation of microcosms of the same sterile soil with these serial dilutions, and subsequent incubation to enable establishment of similar cell abundances between treatments. The structure, cell abundance and activity of denitrifying and nitrite-oxidizing communities were characterized after incubation. Increasing dilution led to a progressive decrease in community diversity as assessed by the number of denaturating gradient gel electrophoresis (DGGE) bands, while community functioning was not impaired when cell abundance recovered after incubation. The microcosms were then subjected to a model disturbance: heating to 42 degrees C for 24 h. Abundance, structure and activity of each community were measured 3 h after completion of the disturbance to assess resistance, and after incubation of microcosms for 1 month to assess resilience. Resistance and resilience to the disturbance differed between the two communities, nitrite oxidizers being more affected. However, reducing the diversity of the two microbial functional groups did not impair either their resistance or their resilience following the disturbance. These results demonstrate the low sensitivity of the resistance and resilience of both microbial groups to diversity decline provided that cell abundance is similar between treatments.  相似文献   

20.
Leaks and spillages during the extraction, transport and storage of petroleum and its derivatives may result in environmental contamination. Biodiesel is an alternative energy source that can contribute to a reduction in environmental pollution. The aim of the present work was to evaluate biodegradation of diesel, biodiesel, and a 20% biodiesel-diesel mixture in oxisols from southern Brazil, using two bioremediation strategies: natural attenuation and bioaugmentation/biostimulation. Fuel biodegradation was monitored over 60 days by dehydrogenase activity, CO2 evolution and gas chromatography. The bacterial inoculum employed for bioaugmentation/biostimulation consisted of Bacillus megaterium, Bacillus pumilus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia and PCR-DGGE using 16S RNAr primers showed that some members of this consortium survived in the soil after 60 days. The biodegradation of pure biodiesel was higher for bioaugmentation/biostimulation than for natural attenuation, suggesting that the addition of the microbial consortium, together with adjustment of the macronutrient ratio, increased biodiesel degradation. The results of dehydrogenase and respiratory activity, together with GC analysis, suggested that the presence of biodiesel may, by stimulating general microbial degradative metabolism, increase the biodegradation of petroleum diesel. The microbial community was altered by both treatments, with natural attenuation producing a lower diversity index than the amended soil. The bioaugmentation/biostimulation strategy was showed to have a high potential for cleaning up soils contaminated with diesel and biodiesel blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号