首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.  相似文献   

2.
An optimization of the production and purification processes of carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5, by heterologous expression in Escherichia coli is described. The genes encoding mature bacteriocin were cloned into an E. coli expression system and expressed as a fusion protein with a thermostable thioredoxin. Recombinant E. coli were cultivated following a fed-batch fermentation process with pH, temperature and oxygenation regulation. The overexpression of the fusion proteins was improved by replacing IPTG by lactose. The fusion proteins were purified by thermal coagulation followed by affinity chromatography. The thioredoxin fusion protein was removed by using CNBr instead of enterokinase and the carnobacteriocins were recovered by reverse-phase chromatography. These optimizations led us to produce up to 320 mg of pure protein per liter of culture, which is four to ten fold higher than what is described for other heterologous expression systems.  相似文献   

3.
4.
Transient expression of recombinant proteins in mammalian cell culture in a 100-L scale requires a large quantity of plasmid that is very labour intensive to achieve with shake flask cultures and commercially available plasmid purification kits. In this paper we describe a process for plasmid production in 100-mg scale. The fermentation is carried out in a 4-L fed-batch culture with a minimal medium. The detection of the end of batch and triggering the exponential (0.1 h(-1)) feed profile was unattended and controlled by Multi-fermenter Control System. A restricted specific growth rate in fed-batch culture increased the specific plasmid yield compared to batch cultures with minimal and rich media. This together with high biomass concentration (68-107 g L(-1) wet weight) achieves high volumetric yields of plasmid (95-277 mg L(-1) depending on the construct). The purification process consisted of alkaline lysis, lysate clarification and ultrafiltration, two-phase extraction with Triton X-114 for endotoxin removal, anion-exchange chromatography as a polishing step, ultrafiltration and sterile filtration. Both fermentation and purification processes were used without optimisation for production of four plasmids yielding from 39 to 163 mg of plasmids with endotoxin content of 2.5 EU mg(-1) or less.  相似文献   

5.
A process for maximizing the volumetric productivity of recombinant ovine growth hormone (r-oGH) expressed in Escherichia coli during high cell density fermentation process has been devised. Kinetics of r-oGH expression as inclusion bodies and its effect on specific growth rates of E. coli cells were monitored during batch fermentation process. It was observed that during r-oGH expression in E. coli, the specific growth rate of the culture became an intrinsic property of the cells which reduced in a programmed manner upon induction. Nutrient feeding during protein expression phase of the fed-batch process was designed according to the reduction in specific growth rate of the culture. By feeding yeast extract along with glucose during fed-batch operation, high cell growth with very little accumulation of acetic acid was observed. Use of yeast extract helped in maintaining high specific cellular protein yield which resulted in high volumetric productivity of r-oGH. In 16 h of fed-batch fermentation, 3.2 g l-1 of r-oGH were produced at a cell OD of 124. This is the highest concentration of r-oGH reported to date using E. coli expression system. The volumetric productivity of r-oGH was 0.2 g l-1 h-1, which is also the highest value reported for any therapeutic protein using IPTG inducible expression system in a single stage fed-batch process.  相似文献   

6.
Summary Astaxanthin, a main carotenoid pigment, has a strong antioxidant activity. The effects of sugar-feeding strategies on astaxanthin production by Xanthophyllomyces dendrorhous fed-batch fermentation were studied. Sugar was added instantaneously to a 30 l fermentor at various discrete time instants (pulse-feeding), or continuously to the fermentor to maintain the constant sugar concentration. Pulse-feeding experiments were initiated with sugar concentrations from 30 to 50 g/l, and then one, two, three and four feedings were made. The results showed that optimal sugar feeding depended on feeding time and pulse sugar feeding was the best among all experiments, in which a significant increase (54.9%) in production of astaxanthin was achieved at 132 h in a pulse fed-batch process compared with a batch process.  相似文献   

7.
人源性抗HBsAg Fab抗体的发酵生产研究   总被引:3,自引:0,他引:3  
为了适应工业生产的需要,利用fed—batch方法,重组人源性抗HBsAg Fab抗体酵母工程菌在30L发酵罐中进行了高密度发酵,发酵最适温度30℃,pH值范围5.0~5.3,溶氧范围20%~30%。发酵液OD600值达到300时开始诱导,甲醇最佳诱导浓度为10mL/L。重组人源性抗HBsAg Fab抗体经离子交换层析纯化,纯化产品经SDS-PAGE、Western blot进行分析和ELISA方法进行活性测定。结果显示,重组Fab抗体在Fed-batch发酵系统中可高效表达,经过192h的发酵生产,重组人源性抗HBsAg Fab抗体的表达量可达412mg/L。发酵上清经过离子交换层析纯化,获得纯度为95%的重组Fab抗体,该Fab抗体经ELISA分析具有较高的HBsAg抗原亲和力和特异性。结果证实可以通过高密度发酵毕赤酵母工程菌来高效生产重组人源性抗HBsAg Fab抗体,为后续的工业化生产应用奠定了基础。  相似文献   

8.
The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production. The use of different phenotypes under PAOX promoter, other alternative promoters, culture medium, and operational strategies with the objective to maximize either yield or productivity of the heterologous protein, but also to obtain a repetitive product batch to batch to get a robust process for the final industrial application have been reported. Medium composition, kinetics growth, fermentation operational strategies from fed-batch to continuous cultures using different phenotypes with the most common PAOX promoter and other novel promoters (GAP, FLD, ICL), the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail.  相似文献   

9.
Yeasts combine the ease of genetic manipulation and fermentation of a microorganism with the capability to secrete and modify foreign proteins according to a general eukaryotic scheme. Their rapid growth, microbiological safety, and high-density fermentation in simplified medium have a high impact particularly in the large-scale industrial production of foreign proteins, where secretory expression is important for simplifying the downstream protein purification process. However, secretory expression of heterologous proteins in yeast is often subject to several bottlenecks that limit yield. Thus, many studies on yeast secretion systems have focused on the engineering of the fermentation process, vector systems, and host strains. Recently, strain engineering by genetic modification has been the most useful and effective method for overcoming the drawbacks in yeast secretion pathways. Such an approach is now being promoted strongly by current post-genomic technology and system biology tools. However, engineering of the yeast secretion system is complicated by the involvement of many cross-reacting factors. Tight interdependence of each of these factors makes genetic modification difficult. This indicates the necessity of developing a novel systematic modification strategy for genetic engineering of the yeast secretion system. This mini-review focuses on recent strategies and their advantages for systematic engineering of yeast strains for effective protein secretion.  相似文献   

10.
High levels of expression of heterologous proteins (from 5 to 15% of total cell proteins) in the budding yeast Saccharomyces cerevisiae have been obtained previously by the use of the inducible strong hybrid promoter UASGAL/CYC1, in batch as well in continuous cultures. However, in order to maximize the yield of heterologous proteins, a computer controlled fed-batch fermentation is essential. For this reason we have developed a fed-batch system based on a semiconductor gas detector that measures ethanol in the outflow gases. The optimal conditions are described for very high production (up to 1550 mg/liter), with both high productivity (up to 100-120 mg/liter/h) and high yield (up to 15 mg of protein/g of dry biomass), of heterologous protein driven by the UASGAL/CYC1 promoter in a completely computer controlled fed-batch fermentation of budding yeast. However, high production was dependent upon the addition of a large amount of galactose. The process was improved by developing a new, more easily inducible, vector system obtained by subcloning the GAL4 gene.  相似文献   

11.
By expanded bed adsorption (EBA) it was possible to simultaneously recover and purify the heterologous cutinase directly from the crude feedstock. However, it was observed that in a highly condensed and consequently economically advantageous purification process as EBA, the cultivation step highly influences the following purification step. Thus, the yeast cultivation and cutinase purification by EBA cannot be considered as independent entities, and the understanding of the interactions between them are crucial for the development of a highly cost effective overall cutinase production process. From the cultivation strategies studied, one batch, one continuous and two fed-batch cultivations, the strategy that resulted in a more economical cutinase overall production process was a fed-batch mode with a feeding in galactose. This last cultivation strategy, exhibited the highest culture cutinase activity and bioreactor productivity, being obtained 3.8-fold higher cutinase activity and 3.0-fold higher productivity that could compensate the 40% higher cultivation medium costs when compared with a fed-batch culture with a feeding on glucose and galactose. Moreover, a 3.8-fold higher effective cutinase dynamic adsorption capacity and 3.8-fold higher effective purification productivity were obtained in relation to the fed-batch culture with the feeding on glucose and galactose. The cultivation strategy with a feeding on galactose, that presented 5.6-fold higher effective purification productivity, could also compensate the 32% effective adsorption capacity obtained with a continuous cultivation broth. Furthermore, a 205-fold higher cutinase activity, 24-fold higher bioreactor productivity and 6% of the cultivation medium costs were obtained in relation to the continuous culture.  相似文献   

12.
The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.  相似文献   

13.
Different fermentation processes, including batch, fed-batch and repeated fed-batch processes by Schizochytrium sp., were studied and compared for the effective DHA-rich microbial lipids production. The comparison between different fermentation processes showed that fed-batch process was a more efficient cultivation strategy than the batch process. Among the four different feeding strategies, the glucose concentration feed-back feeding strategy had achieved the highest fermentation results of final cell dry weight, total lipids content, DHA content and DHA productivity of 72.37, 48.86, 18.38 g l?1 and 138.8 mg l?1 h?1, respectively. The repeated fed-batch process had the advantages of reducing the time and cost for seed culture and inoculation between each fermentation cycles. The results of fermentation characteristics and lipid characterization of the repeated fed-batch process indicated that this repeated fed-batch process had promising industrialization prospect for the production of DHA-rich microbial lipids.  相似文献   

14.
An antimicrobial peptide, piscidin, was overexpressed as a fused form with the ubiquitin molecule in Escherichia coli, and the fusion protein was purified using immobilized metal affinity chromatography (IMAC). The peptide was released from its fusion partner by using yeast ubiquitin hydrolase (YUH), and subsequently purified by reverse phase chromatography. The expression and purification process of piscidin encountered several problems such as the lysis of the bacterial cell upon induction of the peptide production, the unwanted cleavage of the fusion protein inside the bacterial cell, and high tendency to aggregate in the aqueous environment. Such problems were alleviated by employing ubiquitin as a fusion partner for piscidin, growing the cells at a lower temperature, and changing the order of the purification steps. The yields of the fusion protein and the peptide were around 15 and 1.5 mg per liter of LB or minimal medium, respectively. The recombinant expression and purification of piscidin will enable its structural and dynamic studies using multidimensional NMR spectroscopy.  相似文献   

15.
The industrial production of recombinant proteins requires control of both fermentation and purification steps. For the serodiagnosis of toxoplasmosis, the main antigen is a membrane protein of 30 kDa (P30). The P30 gene was cloned and expressed in Schizosaccharomyces pombe at 0.7 μg/ml in culture medium. Batch fermentation was optimized by the specific choice of peptones, which enabled optimum growth and protein expression without reducing the efficacy of the purification step. Analytical purification was then carried out using cation-exchange chromatography. For larger volumes, scaling up was performed on expanded mode by using a Streamline system (Pharmacia). This purification step allowed us to obtain a 67.5% recovery with a purification factor greater than 27-fold. Expanded bed adsorption technology is a convenient and effective technique for protein capture directly from feedstock, and the eluted fraction is ready for a second affinity chromatography step. This second step is performed with a yield of 40% and provides a final purification factor of 2000-fold.  相似文献   

16.
Granulysin is a cytolytic, proinflammatory protein produced by human cytolytic T-lymphocytes and natural killer cells. Granulysin has two stable isoforms with molecular weight of 9 and 15 kDa; the 9-kDa form is a result of proteolytic maturation of the 15-kDa precursor. Recombinant 9-kDa granulysin exhibits cytolytic activity against a variety of microbes, such as bacteria, parasites, fungi, yeast and a variety of tumor cell lines. However, it is difficult to produce granulysin in large quantities by traditional methods. In this study, we developed a simple and robust fed-batch fermentation process for production and purification of recombinant 9- and 15-kDa granulysin using Pichia pastoris in a basal salt medium at high cell density. The granulysin yield reaches at least 100 mg/l in fermentation, and over 95 % purity was achieved with common His-select affinity and ion exchange chromatography. Functional analysis revealed that the yeast-expressed granulysin displayed dose-dependent target cytotoxicity. These results suggest that fermentation in P. pastoris provides a sound strategy for large-scale recombinant granulysin production that may be used in clinical applications and basic research.  相似文献   

17.
Raman spectroscopy as a process analytical technology tool was implemented for the monitoring and control of ethanol fermentation carried out with Saccharomyces cerevisiae. The need for the optimization of bioprocesses such as ethanol production, to increase product yield, enhanced the development of control strategies. The control system developed by the authors utilized noninvasive Raman measurements to avoid possible sterilization problems. Real-time data analysis was applied using partial least squares regression (PLS) method. With the aid of spectral pretreatment and multivariate data analysis, the monitoring of glucose and ethanol concentration was successful during yeast fermentation with the prediction error of 4.42 g/L for glucose and 2.40 g/L for ethanol. By Raman spectroscopy-based feedback control, the glucose concentration was maintained at 100 g/L by the automatic feeding of concentrated glucose solution. The control of glucose concentration during fed-batch fermentation resulted in increased ethanol production. Ethanol yield of 86% was achieved compared to the batch fermentation when 75 % yield was obtained. The results show that the use of Raman spectroscopy for the monitoring and control of yeast fermentation is a promising way to enhance process understanding and achieve consistently high production yield.  相似文献   

18.
Advanced control of glutathione fermentation process   总被引:18,自引:0,他引:18  
A study was performed to understand the fermentation process for production of glutathione fermentation (GSH) with an improved strain of baker's yeast. Simultaneous utilization of sugar and ethanol has been found to be a key factor in the industrial process to produce GSH using Saccharomyces cerevisiae KY6186. Based on this observation, the optimal sugar feed profile for the fed-batch operation has been determined. A feedforward/feedback control system was developed to regulate the sugar feed rate so as to maximize GSH production yields. Using the feedforward/feedback control system and the on-line data of oxygen and ethanol concentration in exhaust gas, the successful scaleup to the production level was accomplished. An average of 40% improvement of glutathione production compared to a conventionally programmed control of exponential fed-batch operation was found in the new process. (c) 1992 John Wiley & Sons, Inc.  相似文献   

19.
蛇毒锯鳞蝰素融合蛋白的发酵与纯化   总被引:1,自引:0,他引:1  
研究大肠杆菌表达重组蛇毒锯鳞蝰素(Echistatin,Ecs)融合蛋白的发酵和纯化工艺。将Ecs基因插入表达载体pTXB1,转化E.coliBL21(DE3)构建工程菌。对工程菌进行补料分批培养并诱导表达,研究培养基、培养和诱导时间对工程菌生长和目的蛋白表达的影响,几丁质亲和层析纯化Ecs融合蛋白,经DTT裂解后,检测Ecs活性。发酵后菌体湿重可达75g/L,融合蛋白表达量约占总蛋白的35%,重组质粒在BL21宿主菌中传代稳定。亲和层析纯化后,得到Ecs单体,得率为28mg/L发酵液。生物学活性分析显示,重组Ecs能有效抑制血小板的聚集,其活性与天然Ecs相似。优化了Ecs融合基因工程菌的发酵和纯化条件,为规模化生产奠定基础。  相似文献   

20.
模拟青霉素分批补料发酵过程的细胞自动机模型   总被引:2,自引:0,他引:2  
根据青霉素产生菌的生长机理和青霉素分批补料发酵过程的动力学特性,在Paull等建立的形态学结构动力学模型的基础上,建立了模拟青霉素分批补料发酵过程的细胞自动机模型。模型采用三维细胞自动机作为菌体生长空间,采用Moore型邻域作为细胞邻域,其演化规则根据青霉素分批补料发酵过程中菌体生长机理和简化动力学结构模型设计。模型中的每一个细胞既可代表单个产黄青霉菌体细胞,又可代表特定数量的这种菌体细胞,它具有不同的状态。对模型进行的仿真实验结果表明:模型不但能一致地复现形态学结构动力学模型所描述的青霉素分批补料发酵过程的演化特性,而且较形态学结构动力学模型更加直观地刻画了青霉素分批补料发酵过程的演化行为。最后,对所建模型在实际生产过程中的应用问题进行了分析,指出了需要进一步研究的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号