首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When spermdine, putrescine or 1,3-diaminopropane was injected (12.5 μmol/100 g body weight) into rats i h before thyrotropin, ornithine decarboxylase activity was increased by 75–150% over control levels. However, when 75 μmol polyamine/100 g body weight was injected, thyrotropin-activated activity was inhibited by 70–95%. Multiple polyamine injections inhibited goitrogen-induced activity and gland weight increase by approx. 35%.The polyamines also inhibited thyrotrophin-activated rat thyroid ornithine decarboxylase in vitro in a dose-related fashion, with 50% inhibition occurring at 2–5 · 10−4 M. The inhibition was not due to a direct effect on the enzyme. No stimulation was seen with low concentration of polyamine. The polyamines had no effect on in vitro thyroid protein/RNA synthesis or glucose oxidation but had a biphasic effect on plasma membrane adenylate cyclase activity.A protein inhibitor to thyroid ornithine decarboxylase was generated in vivo by multiple injections of the polyamines into rats, and in vitro by incubating bovine thyroid slices with 2–10 mM polyamine. The inhibitor was non-dialyzable, destroyed by boiling, and its formation was blocked in a dose-related fashion by cycloheximide.We conclude that: (1) thyroid ornithine decarboxylase is subject not only to positive control, but is also negatively regulated by its end-products, the polyamines, which induce a protein inhibitor to ornithine decarboxylase; (2) since gland growth is also inhibited under these conditions, the polyamine effect on thyroid ornithine decarboxylase may be biologically significant.  相似文献   

2.
The translational control of ornithine decarboxylase (ODCase) by polyamines has been studied using a cellular as well as a cell-free system. A mutant L1210 cell line, in which ODCase represents 4-5% of all soluble protein synthesized, was isolated by stepwise selection for resistance to the ODCase inhibitor 2-difluoromethylornithine (DFMO). The exceptionally high expression of ODCase in these cells was due to amplification of the ODCase gene. When the cells were grown in the absence of DFMO, dramatic increases in cellular putrescine and spermidine levels occurred. These increases were accompanied by a rapid decrease in ODCase synthesis. The change in ODCase synthesis was not associated with an alteration in the amount of ODCase mRNA, demonstrating a translational control in these cells. The effects of polyamines on ODCase mRNA translation were also studied in rabbit reticulocyte lysates using mRNA isolated from the DFMO-resistant cells. Low concentrations of spermidine stimulated synthesis of ODCase and that of total protein, when added to gel-filtered lysates. Notably, optimal stimulation of ODCase synthesis was achieved at a spermidine concentration lower than that required for an optimal rate of total protein synthesis. Higher concentrations of spermidine were inhibitory, and their effects of ODCase synthesis were stronger than on protein synthesis in general, resulting in a decrease in the fraction of protein synthesis accounted for by ODCase. The present results demonstrate that at least part of the feedback regulation of ODCase exerted by the polyamines is due to direct inhibition of ODCase mRNA translation.  相似文献   

3.
Translational regulation of ornithine decarboxylase by polyamines   总被引:12,自引:0,他引:12  
L Persson  I Holm  O Heby 《FEBS letters》1986,205(2):175-178
  相似文献   

4.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

5.
Ornithine decarboxylase (ODC, EC 4.1.1.17) expression is subject to negative feedback regulation by the polyamines. The results of previous studies favor either translational or post-translational regulation. To facilitate further analysis of the mechanism by which polyamines affect ODC expression we have used a cell line (L1210-DFMOr) that overproduces ODC. This cell line was isolated by selection for resistance to the antiproliferative effect of the ODC inhibitor alpha-difluoromethylornithine (DFMO). These cells respond similarly to polyamine depletion and repletion as do their wild-type counterparts. When L1210-DFMOr cells were grown in the presence of 20 mM DFMO (i.e., when their polyamine content was reduced to an extent that still permitted a normal growth rate) ODC represented 4-5% of the soluble protein synthesized. After transfer of the cells to a medium lacking DFMO (i.e., when their polyamine pools were repleted), the rate of incorporation of [35S]methionine into ODC was one order of magnitude lower. Since this difference in incorporation of radioactivity into ODC remained the same irrespective of the pulse-label time used (between 2 and 20 min) it is likely to represent a true difference in ODC synthesis rate. Consequently, the pulse-label experiments cannot be explained by rapid degradation of the enzyme during the labeling period. The difference in ODC synthesis rate was not accompanied by a corresponding difference in the steady-state level of ODC mRNA. Analyses of the distribution of ODC mRNA in polysome profiles did not demonstrate any major difference between cells grown in the absence or presence of DFMO, even though the ODC synthesis rate differed by as much as 10-fold. However, the distribution of the ODC mRNA in the polysome profiles indicated that the message was poorly translated. Thus, most of the ODC mRNA was present in fractions containing ribosomal subunits or monosomes. Inhibition of elongation by cycloheximide treatment resulted in a shift of the ODC mRNA from the region of the gradient containing ribosomal subunits to that containing mono- and polysomes, indicating that most of the ODC mRNA was accessible to translation. Taken together these data lend support to a translational control mechanism which involves both initiation and elongation.  相似文献   

6.
The activity of ornithine decarboxylase was investigated in cartilage from chick embryos, rabbits, rats and human foetuses. The enzyme activity in these cartilages was of the same order as the detected in other body tissues. Ornithine decarboxylase activity in chick-embryo cartilage and liver was the same when compared on the basis of total soluble tissue protein. The cartilage enzyme exhibited a pH optimum of 6.5 and a Km for ornithine of 0.16mM. Ornithine decarboxylase activity in chick-embryo pelvic leaflets was maintained at the value in vivo for up to 22h when the isolated tissue was incubated in a modified Waymouth's medium (MB 752/1) at 37 degrees C. After addition of cycloheximide to the incubation medium, ornithine decarboxylase activity declined, with a half-life of 40 min. The concentrations of the polyamines spermidine and spermine in chick-embryo pelvic cartilage and rabbit costal cartilage were of the same order as the concentrations detected in other tissues.  相似文献   

7.
Regulation of ornithine decarboxylase   总被引:8,自引:0,他引:8  
  相似文献   

8.
The effect of spermidine and spermine on the translation of the mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase was studied using a reticulocyte lysate system and specific antisera to precipitate these proteins. It was found that the synthesis of these key enzymes in the biosynthesis of polyamines was much more strongly inhibited by the addition of polyamines than was either total protein synthesis or the synthesis of albumin. Translation of the mRNA for S-adenosylmethionine decarboxylase was maximal in a lysate which had been substantially freed from polyamines by gel filtration. Addition of 80 microM spermine had no significant effect on total protein synthesis and stimulated albumin synthesis but reduced the production of S-adenosylmethionine decarboxylase by 76%. Similarly, addition of 0.8 mM spermidine reduced the synthesis of S-adenosylmethionine decarboxylase by 82% while albumin and total protein synthesis were similar to that found in the gel-filtered lysate. Translation of ornithine decarboxylase mRNA was greater in the gel-filtered lysate than in the control lysate but synthesis of ornithine decarboxylase was stimulated slightly by low concentrations of polyamines and was maximal at 0.2 mM spermidine or 20 microM spermine. Higher concentrations were strongly inhibitory with a 70% reduction occurring at 0.8 mM spermidine or 150 microM spermine. Further experiments in which both polyamines were added together confirmed that the synthesis of ornithine and S-adenosylmethionine decarboxylases were much more sensitive to inhibition by polyamines than protein synthesis as a whole. These results indicate that an important part of the regulation of polyamine biosynthesis by polyamines is due to a direct inhibitory effect of the polyamines on the translation of mRNA for these biosynthetic enzymes.  相似文献   

9.
The peptide mixture obtained from controlled proteolytic digestion of ligandin with proteinase K or subtilisin retained 40% of glutathione-S-transferase and steroid isomerase activities, immunological reactivity and lower affinity bilirubin binding but binding at the primary site was abolished. When these limited proteolytic digests, which had no intact ligandin as determined by SDS gel electrophoresis, were subjected to Sephadex G-75 column chromatography, 40–50% of the peptide fragments were recovered in fractions where intact ligandin eluted. The results suggest that intact ligandin is not required for enzymatic activities, binding of bilirubin at the secondary site, or immunological reactivity; steroid isomerase and glutathione-S-transferase activities are modulated in a parallel manner and may be mediated by the same region of the protein, and primary and secondary binding sites for bilirubin are distinct and independent, despite nicks introduced by proteolysis in ligandin's subunits, some of the fragments remain associated under non-denaturing conditions and the susceptibility of the two subunits to the proteases is different.  相似文献   

10.
Theiss C  Bohley P  Voigt J 《Plant physiology》2002,128(4):1470-1479
Polyamines are required for cell growth and cell division in eukaryotic and prokaryotic organisms. In the unicellular green alga Chlamydomonas reinhardtii, biosynthesis of the commonly occurring polyamines (putrescine, spermidine, and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. In synchronized C. reinhardtii cultures, transition to the cell division phase was preceded by a 4-fold increase in ODC activity and a 10- and a 20-fold increase, respectively, in the putrescine and spermidine levels. Spermine, however, could not be detected in C. reinhardtii cells. Exogenous polyamines caused a decrease in ODC activity. Addition of spermine, but not of spermidine or putrescine, abolished the transition to the cell division phase when applied 7 to 8 h after beginning of the light (growth) phase. Most of the cells had already doubled their cell mass after this growth period. The spermine-induced cell cycle arrest could be overcome by subsequent addition of spermidine or putrescine. The conclusion that spermine affects cell division via a decreased spermidine level was corroborated by the findings that spermine caused a decrease in the putrescine and spermidine levels and that cell divisions also could be prevented by inhibitors of S-adenosyl-methionine decarboxylase and spermidine synthase, respectively, added 8 h after beginning of the growth period. Because protein synthesis was not decreased by addition of spermine under our experimental conditions, we conclude that spermidine affects the transition to the cell division phase directly rather than via protein biosynthesis.  相似文献   

11.
I Matsui  S Otani  S Morisawa 《Life sciences》1979,24(24):2231-2236
The administration of biliverdin (0.1mg/g of body weight) into the peritoneal cavity of rats resulted in the induction of ornithine decarboxylase in the liver. When the temporal relationships between the changes in intracellular adenosine 3', 5'-cyclic monophosphate (cyclic AMP) level, cyclic AMP-dependent protein kinase activity and the induction of ornithine decarboxylase were investigated, the concentration of cyclic AMP increased significantly 2 h after the administration of biliverdin, while cyclic AMP-dependent protein kinase was activated after 2–4 h. The hepatic ornithine decarboxylase activity began to increase 4 h after biliverdin injection. These results suggest that there is some sequential relationship between the increase of cyclic AMP, the activation of cyclic AMP-dependent protein kinase and the induction of ornithine decarboxylase although the direct correlation of these three events remains to be elucidated.  相似文献   

12.
Low concentrations of putrescine (10?5M) blocked ornithine decarboxylase (ODC) in rat hepatoma (HTC) cells in culture, but the lower homologue of putrescine, 1, 3 diaminopropane, had no effect on ornithine decarboxylase at 10?5M. Higher concentrations of both putrescine and 1, 3 diaminopropane induced approximately the same amount of soluble ODC antizyme type inhibitor. When concentrated dialyzed supernatants of cells grown in 10?5M putrescine were treated with 250 mM NaCl and chromatographed on a superfine Sephadex G-75 column, both ODC and inhibitor were recovered. Spermidine, spermine and cadaverine also induced the inhibitor suggesting a low specificity of induction by amines.  相似文献   

13.
14.
Treatment of tobacco liquid suspension cultures with methylglyoxal bis(guanylhydrazone) (MGBG) an inhibitor of S-adenosylmethionine decarboxylase, resulted in a dramatic overproduction of a 35-kDa peptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Malmberg, R.L., and McIndoo, J. (1983) Nature 305, 623-625). MGBG treatment also resulted in a 20-fold increase in the activity of S-adenosylmethionine decarboxylase. Purification of S-adenosylmethionine decarboxylase from MGBG-treated cultures revealed that the overproduced 35-kDa peptide and S-adenosylmethionine decarboxylase are identical. Precursor incorporation experiments using [3H] methionine and [35S]methionine revealed that MGBG does not induce any increased synthesis of S-adenosylmethionine decarboxylase but rather stabilizes the protein to proteolytic degradation. The half-life of the enzyme activity was increased when MGBG was present in the growth medium. In addition to stabilizing S-adenosylmethionine decarboxylase, MGBG also resulted in the rapid and specific loss of arginine decarboxylase activity with little effect ornithine decarboxylase. The kinetics of this effect suggest that arginine decarboxylase synthesis was rapidly inhibited by MGBG. Exogenously added polyamines had little effect on ornithine decarboxylase, whereas S-adenosylmethionine and arginine decarboxylase activities rapidly diminished with added spermidine or spermine. Finally, inhibition of ornithine decarboxylase was lethal to the cultures, whereas inhibition of arginine decarboxylase was only lethal during initiation of growth in suspension culture.  相似文献   

15.
The administration of sulfobromophthalein (BSP, 0.5 mmol/kg, ip.) increased ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) activities to 30-fold and 5-fold, respectively, of the controls at 12 hr in the liver of rats. Parallel to the increase in ODC, there was an increase in hepatic putrescine content. However, spermine content tended to decrease. BSP increased ODC and SAMDC activities and putrescine content, but decreased spermine content, in a dose-dependent manner. Pretreatment of rats with actinomycin D and cycloheximide almost completely blocked the BSP-mediated increase of ODC and SAMDC activities. Pretreatment with glutathione (GSH) failed to inhibit BSP-mediated increase of ODC and SAMDC activities. In addition, the administration of BSP-GSH conjugate (0.5 mmol/kg, iv.) did not produce the increase of ODC and SAMDC activities. Pretreatment with phenobarbital and 3-methylcholanthrene did not inhibit BSP-mediated increase of ODC and SAMDC. The results indicate that BSP could cause changes in hepatic polyamine content due to the induction of ODC and SAMDC.  相似文献   

16.
To determine the steric course of the reaction of bacterial ornithine decarboxylase [EC 4.1.1.17], we have carried out the decarboxylation of L-ornithine in 2H2O and that of DL-[2-2H]ornithine in H2O, and obtained putrescine bearing a single deuterium atom in the C-1 position. The stereochemistry of [1-2H]putrescine was established by conversion to 1-(2-pyrrolidinyl)-2-propanone with acetoacetate and the pro-S hydrogen-specific diamine oxidase from pea seedlings. Analysis of deuterium content by gas chromatography-mass spectrometry showed that the deuterium label was fully retained during the conversion of [1-2H]putrescine produced by the decarboxylation of L-ornithine in 2H2O to 1-(2-pyrrolidinyl)-2-propanone, in contrast with the considerable loss of label from [1-2H]putrescine which was produced by the decarboxylation of DL-[2-2H]ornithine in H2O. The extent of loss of the deuterium label was in good agreement with the estimated value based on the isotope effect in the diamine oxidase reaction. These results indicate that the introduced deuterium (or hydrogen) is in the pro-R position at C-1 of putrescine, and consequently the ornithine decarboxylase reaction proceeds with retention of configuration.  相似文献   

17.
18.
A macromolecular factor that inhibits the activity of the antizyme to ornithine decarboxylase (ODC) was found in rat liver extracts. The factor, 'antizyme inhibitor', was heat-labile, non diffusable and of similar molecular size to ODC. The antizyme inhibitor re-activated ODC that had been inactivated by antizyme, apparently by replacing ODC in a complex with antizyme. Therefore the antizyme inhibitor can be used to assay the amount of inactive ODC-antizyme complex formed in vitro. When assayed by this method, the complex was shown to be eluted before ODC from a Sephadex G-100 column. Significant increase in ODC activity was observed when the antizyme inhibitor was added to crude liver extracts from rats that had been injected with 1,3-diaminopropane to cause decay of ODC activity, suggesting the presence of inactive ODC-antizyme complex in the extracts.  相似文献   

19.
20.
The structure of the complex between cytochrome c (CYC) and the cytochrome bc(1) complex (QCR) from yeast crystallized with an antibody fragment has been recently determined at 2.97 A resolution [Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 2800]. CYC binds to subunit cytochrome c(1) of the enzyme stabilized by hydrophobic interactions surrounding the heme crevices creating a small, compact contact site. A central cation-pi interaction is an important and conserved feature of CYC binding. Peripheral patches with highly conserved complementary charges further stabilize the enzyme-substrate complex by long-range electrostatic forces and may affect the orientation of the substrate. Size and characteristics of the contact site are optimal for a transient electron transfer complex. Kinetic data show a bell-shaped ionic strength dependence of the cytochrome c reduction with a maximum activity near physiological ionic strength. The dependence is less pronounced in yeast compared to horse heart CYC indicating less impact of electrostatic interactions in the yeast system. Interestingly, a local QCR activity minimum is found for both substrates at 120-140 mM ionic strength. The architecture of the complex results in close distance of both c-type heme groups allowing the rapid reduction of cytochrome c by QCR via direct heme-to-heme electron transfer. Remarkably, CYC binds only to one of the two possible binding sites of the homodimeric complex and binding appears to be coordinated with the presence of ubiquinone at the Q(i) site. Regulatory aspects of CYC reduction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号