首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Budyansky  A. V.  Tsybulin  V. G. 《Biophysics》2019,64(2):256-260
Biophysics - A model of predator–prey dynamics in a spatially heterogeneous range is considered using a system of two nonlinear equations of the diffusion–advection reaction. The...  相似文献   

2.
We examine the nonlinear reaction–diffusion–advection equations to modeling of the predator–prey system under heterogeneous carrying capacity of the prey, and Holling type II functional response. When advection and diffusion fluxes are absent or small, we detect the discrepancy between the resource (carrying capacity) and species distributions. The large diffusion eliminates this effect. We propose a modification of the functional response coefficients to provide the correlation between species distribution and resource in both cases. The numerical simulation of several models both under small and moderate advection–diffusion fluxes is carried out.  相似文献   

3.
4.
5.
We present a method based on the Melnikov function used in dynamical systems theory to determine the wavespeed of travelling waves in perturbed reaction–diffusion systems. We study reaction–diffusion systems which are subject to weak nontrivial perturbations in the reaction kinetics, in the diffusion coefficient, or with weak active advection. We find explicit formulæ for the wavespeed and illustrate our theory with two examples; one in which chemotaxis gives rise to nonlinear advection and a second example in which a positive population pressure results in both a density-dependent diffusion coefficient and a nonlinear advection. Based on our theoretical results we suggest an experiment to distinguish between chemotactic and population pressure in bacterial colonies.  相似文献   

6.
7.
Reaction diffusion systems are often used to study pattern formation in biological systems. However, most methods for understanding their behavior are challenging and can rarely be applied to complex systems common in biological applications. I present a relatively simple and efficient, nonlinear stability technique that greatly aids such analysis when rates of diffusion are substantially different. This technique reduces a system of reaction diffusion equations to a system of ordinary differential equations tracking the evolution of a large amplitude, spatially localized perturbation of a homogeneous steady state. Stability properties of this system, determined using standard bifurcation techniques and software, describe both linear and nonlinear patterning regimes of the reaction diffusion system. I describe the class of systems this method can be applied to and demonstrate its application. Analysis of Schnakenberg and substrate inhibition models is performed to demonstrate the methods capabilities in simplified settings and show that even these simple models have nonlinear patterning regimes not previously detected. The real power of this technique, however, is its simplicity and applicability to larger complex systems where other nonlinear methods become intractable. This is demonstrated through analysis of a chemotaxis regulatory network comprised of interacting proteins and phospholipids. In each case, predictions of this method are verified against results of numerical simulation, linear stability, asymptotic, and/or full PDE bifurcation analyses.  相似文献   

8.
This paper deals with the spatio-temporal dynamics of a pollinator–plant–herbivore mathematical model. The full model consists of three nonlinear reaction–diffusion–advection equations defined on a rectangular region. In view of analyzing the full model, we firstly consider the temporal dynamics of three homogeneous cases. The first one is a model for a mutualistic interaction (pollinator–plant), later on a sort of predator–prey (plant–herbivore) interaction model is studied. In both cases, the interaction term is described by a Holling response of type II. Finally, by considering that the plant population is the unique feeding source for the herbivores, a mathematical model for the three interacting populations is considered. By incorporating a constant diffusion term into the equations for the pollinators and herbivores, we numerically study the spatiotemporal dynamics of the first two mentioned models. For the full model, a constant diffusion and advection terms are included in the equation for the pollinators. For the resulting model, we sketch the proof of the existence, positiveness, and boundedness of solution for an initial and boundary values problem. In order to see the separated effect of the diffusion and advection terms on the final population distributions, a set of numerical simulations are included. We used homogeneous Dirichlet and Neumann boundary conditions.  相似文献   

9.
We study a diffusive predator–prey model describing the interactions of small fishes and their resource base (small invertebrates) in the fluctuating freshwater marsh landscapes of the Florida Everglades. The spatial model is described by a reaction–diffusion system with Beddington–DeAngelis functional response. Uniform bound, local and global asymptotic stability of the steady state of the PDE model under the no-flux boundary conditions are discussed in details. Sufficient conditions on the Turing (diffusion-driven) instability which induces spatial patterns in the model are derived via linear analysis. Existence of one-dimensional and two-dimensional spatial Turing patterns, including rhombic and hexagonal patterns, are established by weakly nonlinear analyses. These results provide theoretical explanations and numerical simulations of spatial dynamical behaviors of the wetland ecosystems of the Florida Everglades.  相似文献   

10.
《Biophysical journal》2020,118(12):3026-3040
Currently, a significant barrier to building predictive models of cellular self-assembly processes is that molecular models cannot capture minutes-long dynamics that couple distinct components with active processes, whereas reaction-diffusion models cannot capture structures of molecular assembly. Here, we introduce the nonequilibrium reaction-diffusion self-assembly simulator (NERDSS), which addresses this spatiotemporal resolution gap. NERDSS integrates efficient reaction-diffusion algorithms into generalized software that operates on user-defined molecules through diffusion, binding and orientation, unbinding, chemical transformations, and spatial localization. By connecting the fast processes of binding with the slow timescales of large-scale assembly, NERDSS integrates molecular resolution with reversible formation of ordered, multisubunit complexes. NERDSS encodes models using rule-based formatting languages to facilitate model portability, usability, and reproducibility. Applying NERDSS to steps in clathrin-mediated endocytosis, we design multicomponent systems that can form lattices in solution or on the membrane, and we predict how stochastic but localized dephosphorylation of membrane lipids can drive lattice disassembly. The NERDSS simulations reveal the spatial constraints on lattice growth and the role of membrane localization and cooperativity in nucleating assembly. By modeling viral lattice assembly and recapitulating oscillations in protein expression levels for a circadian clock model, we illustrate the adaptability of NERDSS. NERDSS simulates user-defined assembly models that were previously inaccessible to existing software tools, with broad applications to predicting self-assembly in vivo and designing high-yield assemblies in vitro.  相似文献   

11.
12.
Feng H  Han B  Wang J 《Biophysical journal》2012,102(5):1001-1010
We quantify the potential landscape to determine the global stability and coherence of biological oscillations. We explore a gene network motif in our experimental synthetic biology studies of two genes that mutually repress and activate each other with self-activation and self-repression. We find that in addition to intrinsic molecular number fluctuations, there is another type of fluctuation crucial for biological function: the fluctuation due to the slow binding/unbinding of protein regulators to gene promoters. We find that coherent limit cycle oscillations emerge in two regimes: an adiabatic regime with fast binding/unbinding and a nonadiabatic regime with slow binding/unbinding relative to protein synthesis/degradation. This leads to two mechanisms of producing the stable oscillations: the effective interactions from averaging the gene states in the adiabatic regime; and the time delays due to slow binding/unbinding to promoters in the nonadiabatic regime, which can be tested by forthcoming experiments. In both regimes, the landscape has a topological shape of the Mexican hat in protein concentrations that quantitatively determines the global stability of limit cycle dynamics. The oscillation coherence is shown to be correlated with the shape of the Mexican hat characterized by the height from the oscillation ring to the central top. The oscillation period can be tuned in a wide range by changing the binding/unbinding rate without changing the amplitude much, which is important for the functionality of a biological clock. A negative feedback loop with time delays due to slow binding/unbinding can also generate oscillations. Although positive feedback is not necessary for generating oscillations, it can make the oscillations more robust.  相似文献   

13.
According to the binding-zipper model, the RecA class of ATPase motors converts chemical energy into mechanical force by the progressive annealing of hydrogen bonds between the nucleotide and the catalytic pocket. The role of hydrolysis is to weaken the binding of products, allowing them to be released so that the cycle can repeat. Molecular dynamics can be used to study the unbinding process, but the binding process is more complex, so that inferences about it are made indirectly from structural, mutation, and biochemical studies. Here we present a series of models of varying complexity that illustrate the basic processes involved in force production during ATP binding. These models reveal the role of solvent and geometry in determining the amount of mechanical work that can be extracted from the binding process.  相似文献   

14.
The quasi-steady-state (QSS )controller whose implementation on a computer-coupled laboratory fermentor was presented earlier is briefly reviewed. The slow rate of approach to QSS of the uncontrolled process is verified experimentally. The ability of the control system to rapidly force the system to QSS is demonstrated by a run in which three different QSS points are achieved in a single 12 hr fermentation. The nonlinear nature of the process and the ability of the control system to handle this is demonstrated by comparing the response times to command inputs of different sizes. Noninteraction between cell and substrate response modes is demonstrated. The ability of the system to manipulate substrate concentration in the vessel without a direct measure of it is shown.  相似文献   

15.
In this paper, we review some results obtained from three one-dimensional stochastic models, which were used to analyze picophytoplankton dynamics in two sites of the Mediterranean Sea. Firstly, we present a stochastic advection–reaction–diffusion model to describe the vertical spatial distribution of picoeukaryotes in a site of the Sicily Channel. The second model, which is an extended version of the first one, is used to obtain the vertical stationary profiles of two groups of picophytoplankton, i.e. Pelagophytes and Prochlorococcus, in the same marine site as in the previous case. Here, we include intraspecific competition of picophytoplanktonic groups for limiting factors, i.e. light intensity and nutrient concentration. Finally, we analyze the spatio-temporal behaviour of five picophytoplankton populations in a site of the Tyrrhenian Sea by using a reaction–diffusion–taxis model. The study is performed, taking into account the seasonal changes of environmental variables, obtained starting from experimental findings. The multiplicative noise source, present in all three models, mimics the random fluctuations of temperature and velocity field. The vertical profiles of chlorophyll concentration obtained from the stochastic models show a good agreement with experimental data sampled in the two marine sites considered. The results could be useful to devise a new class of models based on a stochastic approach and able to predict future changes in biomass primary production.  相似文献   

16.
Molecular dynamics study of unbinding of the avidin-biotin complex.   总被引:16,自引:10,他引:6       下载免费PDF全文
We report molecular dynamics simulations that induce, over periods of 40-500 ps, the unbinding of biotin from avidin by means of external harmonic forces with force constants close to those of AFM cantilevers. The applied forces are sufficiently large to reduce the overall binding energy enough to yield unbinding within the measurement time. Our study complements earlier work on biotin-streptavidin that employed a much larger harmonic force constant. The simulations reveal a variety of unbinding pathways, the role of key residues contributing to adhesion as well as the spatial range over which avidin binds biotin. In contrast to the previous studies, the calculated rupture forces exceed by far those observed. We demonstrate, in the framework of models expressed in terms of one-dimensional Langevin equations with a schematic binding potential, the associated Smoluchowski equations, and the theory of first passage times, that picosecond to nanosecond simulation of ligand unbinding requires such strong forces that the resulting protein-ligand motion proceeds far from the thermally activated regime of millisecond AFM experiments, and that simulated unbinding cannot be readily extrapolated to the experimentally observed rupture.  相似文献   

17.
Variation in genotypes may be responsible for differences in dispersal rates, directional biases, and growth rates of individuals. These traits may favor certain genotypes and enhance their spatiotemporal spreading into areas occupied by the less advantageous genotypes. We study how these factors influence the speed of spreading in the case of two competing genotypes under the assumption that spatial variation of the total population is small compared to the spatial variation of the frequencies of the genotypes in the population. In that case, the dynamics of the frequency of one of the genotypes is approximately described by a generalized Fisher–Kolmogorov–Petrovskii–Piskunov (F–KPP) equation. This generalized F–KPP equation with (nonlinear) frequency-dependent diffusion and advection terms admits traveling wave solutions that characterize the invasion of the dominant genotype. Our existence results generalize the classical theory for traveling waves for the F–KPP with constant coefficients. Moreover, in the particular case of the quadratic (monostable) nonlinear growth–decay rate in the generalized F–KPP we study in detail the influence of the variance in diffusion and mean displacement rates of the two genotypes on the minimal wave propagation speed.  相似文献   

18.
Two‐patch compartment models have been explored to understand the spatial processes that promote species coexistence. However, a phenomenological definition of the inter‐patch ‘dispersal rate’ has limited the quantitative predictability of these models to community dynamics in spatially continuous habitats. Here, we mechanistically rederived a two‐patch Lotka–Volterra competition model for a spatially continuous reaction‐diffusion system where a narrow corridor connects two large habitats. We provide a mathematical formula of the dispersal rate appearing in the two‐patch compartment model as a function of habitat size, corridor shape (ratio of its width to its length), and organism diffusion coefficients. For most reasonable settings, the two‐patch compartment model successfully approximated not only the steady states, but also the transient dynamics of the reaction–diffusion model. Further numerical simulations indicated the general applicability of our formula to other types of community dynamics, e.g. driven by resource‐competition, in spatially homogeneous and heterogeneous environments. Our results suggest that the spatial configuration of habitats plays a central role in community dynamics in space. Furthermore, our new framework will help to improve experimental designs for quantitative test of metacommunity theories and reduce the gaps among modeling, empirical studies, and their application to landscape management.  相似文献   

19.
The dynamics of Brownian motion has widespread applications extending from transport in designed micro-channels up to its prominent role for inducing transport in molecular motors and Brownian motors. Here, Brownian transport is studied in micro-sized, two-dimensional periodic channels, exhibiting periodically varying cross-sections. The particles in addition are subjected to an external force acting alongside the direction of the longitudinal channel axis. For a fixed channel geometry, the dynamics of the two-dimensional problem is characterized by a single dimensionless parameter which is proportional to the ratio of the applied force and the temperature of the particle environment. In such structures entropic effects may play a dominant role. Under certain conditions the two-dimensional dynamics can be approximated by an effective one-dimensional motion of the particle in the longitudinal direction. The Langevin equation describing this reduced, one-dimensional process is of the type of the Fick-Jacobs equation. It contains an entropic potential determined by the varying extension of the eliminated channel direction, and a correction to the diffusion constant that introduces a space dependent diffusion. Different forms of this correction term have been suggested before, which we here compare for a particular class of models. We analyze the regime of validity of the Fick-Jacobs equation, both by means of analytical estimates and the comparisons with numerical results for the full two-dimensional stochastic dynamics. For the nonlinear mobility we find a temperature dependence which is opposite to that known for particle transport in periodic potentials. The influence of entropic effects is discussed for both, the nonlinear mobility and the effective diffusion constant.  相似文献   

20.
The scenarios of the formation of population distributions have been analyzed for a system of nonlinear reaction–diffusion–advection equations to describe the spatiotemporal distribution of predators and prey. The conditions that must be fulfilled for the model to belong to the class of cosymmetric systems were identified using an analytical approach. Computer simulations of a system with prey and two predators showed that the emergence of families of stationary distributions and oscillatory modes is possible when these conditions are met. The initial distributions of predators were shown to determine the character of the scenario (stationary or non-stationary) at certain combinations of parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号