首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analyzing the electronic states and inter-/intra-molecular interactions of amyloid oligomers expand our understanding of the molecular basis of Alzheimer's disease and other amyloid diseases. In the current study, several high-resolution crystal structures of oligomeric assemblies of Aβ-derived peptides have been studied by the ab initio fragment molecular orbital (FMO) method. The FMO method provides comprehensive details of the molecular interactions between the residues of the amyloid oligomers at the quantum mechanical level. Based on the calculations, two sequential aromatic residues (F19 and F20) and negatively charged E22 on the central region of Aβ have been identified as key residues in oligomer stabilization and potential interesting pharmacophores for preventing oligomer formation.  相似文献   

2.
3.
4.
Aggregates of amyloid-beta proteins (Aβ) have been recognised to be intimately related to pathogenesis of Alzheimer’s disease (AD). Indeed, Aβ aggregates of various sizes from dimers to fibrils were found in the brains of AD patients, and these aggregates can be self-organised. Since abnormal accumulation of metal ions such as Zn, Cu and Fe was also observed in the brains, the association between Aβ aggregations and these metal ions has been studied widely. In the present study, to elucidate the influence of Zn ions on the stability of Aβ aggregates, we performed molecular dynamics (MD) simulations and ab initio fragment molecular orbital (FMO) calculations on the Aβ nonamers with and without Zn ions and investigated the change in its structure and electronic states induced by Zn ions at atomic and electronic levels. The MD simulations revealed that Aβ nonamer cannot keep its symmetry structure, whereas Aβ nonamer with Zn ions keeps the structure. The FMO results indicated that electrostatic interactions among the charged amino-acid residues of Aβ nonamer are significantly changed by the influence of Zn ions to stabilise Aβ nonamer. These results provide useful information for proposing novel compounds, which binds specifically to Aβ and inhibits the Aβ aggregation.  相似文献   

5.
To elucidate the specific interactions between the peroxisome proliferator-activated receptor (PPARα) and ligand GW409544 (GW), we obtained the solvated structures of the PPARα+GW complexes for human, mouse and rat by classical molecular mechanics calculations, and investigated their electronic properties by ab initio fragment molecular orbital calculations. The results indicate that the positively charged amino acids (Lys and Arg) of PPARα make a major contribution to the binding between PPARα and GW. In addition, it was clarified that Ser280 and Tyr314 of human and rat PPARα have a large attractive interaction with GW, while Ser280, Tyr314 and His440 of mouse PPARα have large interaction. These results on the difference in specific interactions between human and mouse/rat PPARα will be useful for predicting the effects of new chemicals on the human body based on the biomedical studies for the experimental animals such as mouse and rat.  相似文献   

6.
7.
The fragment molecular orbital (FMO) method has enabled electronic structure calculations and geometry optimizations of very large molecules with ab initio quality. We applied the method to four FK506 binding protein (FKBP) complexes (denoted by their PDB codes 1fkb, 1fkf, 1fkg, and 1fki) containing rapamycin, FK506, and two synthetic ligands. The geometries of reduced complex models were optimized at the restricted Hartree–Fock (FMO‐RHF) level using the 3‐21G basis set, and then for a better estimate of binding, the energetics were refined at a higher level of theory (2nd order Møller–Plesset perturbation theory FMO‐MP2 with the 6‐31G* basis set). Thus, obtained binding energies were ?103.9 (?82.0), ?102.2 (?69.2), ?70.1 (?57.7), and ?71.3 (?55.3) kcal/mol for 1fkb, 1fkf, 1fkg, and 1fki, respectively, where the correlation contribution is given in parentheses. The results show that the electron correlation contribution to binding is extremely important, and it accounts for 70–80% of the binding energy. The molecular recognition mechanism of FKBP was analyzed in detail based on the FMO‐pair interactions between protein residues and the ligands. Solvation effects on the protein–ligand binding were estimated using the Poisson–Boltzmann/surface area model. Proteins 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
11.
Hsp90 (heat shock protein of 90 kDa) is often found associated with functional domains of client proteins, including those for ligand binding, dimerization, DNA binding, and enzymatic activity. Although Hsp90 can maintain the conformation of functionally important domains prior to activation of the client protein, its specific binding site and the mechanism(s) of Hsp90 dissociation during activation are unknown. Here, we have identified and characterized residues involved in Hsp90 binding within the aryl hydrocarbon receptor (AhR) ligand-binding domain and demonstrate that they overlap with those involved in ligand binding. In agreement with this spatial model, ligand binding results in Hsp90 dissociation from the AhR Per-ARNT-Sim B fragment. Interestingly, whereas Hsp90-binding residues within the ligand-binding domain were not involved in Hsp90-dependent AhR protein stability, several of these residues are important for ligand-dependent AhR activation, and their mutation resulted in conversion of two AhR antagonists/partial agonists into full AhR agonists. These studies reveal co-localization of a tentative Hsp90-binding site with that for AhR ligand binding and provide the first molecular mechanism for Hsp90 dissociation in the activation of a client protein.  相似文献   

12.
13.
14.
15.
Binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR) on the surface of a cancer cell is considered to be a trigger for starting cancer invasions. In addition, the somatomedin B (SMB) domain of vitronectin binds simultaneously to uPAR to construct a ternary complex of uPAR–uPA–SMB. Here we present stable structures of the solvated complexes of uPAR–uPA and uPAR–uPA–SMB obtained by classical molecular mechanics simulations, and the specific interactions between uPAR, uPA and SMB are investigated by ab initio fragment molecular orbital calculations. The result indicates that the SMB binding enhances the binding affinity between uPAR and uPA, although there is no direct contact between SMB and uPA. In particular, the specific interaction between uPAR and the Lys36 residue of uPA is significantly affected by the SMB binding. The positively charged Lys23, Lys46 and Lys61 residues of uPA have strong attractive interactions to uPAR in both the uPAR–uPA and uPAR–uPA–SMB complexes, demonstrating the importance of these residues in the specific binding between uPAR and uPA. The current results on the specific interactions are informative for proposing potent antagonists, which block the uPA and SMB bindings to uPAR.  相似文献   

16.
We extend the effective fragment molecular orbital method (EFMO) into treating fragments connected by covalent bonds. The accuracy of EFMO is compared to FMO and conventional ab initio electronic structure methods for polypeptides including proteins. Errors in energy for RHF and MP2 are within 2 kcal/mol for neutral polypeptides and 6 kcal/mol for charged polypeptides similar to FMO but obtained two to five times faster. For proteins, the errors are also within a few kcal/mol of the FMO results. We developed both the RHF and MP2 gradient for EFMO. Compared to ab initio, the EFMO optimized structures had an RMSD of 0.40 and 0.44 Å for RHF and MP2, respectively.  相似文献   

17.
18.
Cytochrome P450 (CYP) 3A7 plays a crucial role in the biotransformation of the metabolized endogenous and exogenous steroids. To compare the metabolic capabilities of CYP3A7–ligands complexes, three endogenous ligands were selected, namely dehydroepiandrosterone (DHEA), estrone, and estradiol. In this study, a three-dimensional model of CYP3A7 was constructed by homology modeling using the crystal structure of CYP3A4 as the template and refined by molecular dynamics simulation (MD). The docking method was adopted, combined with MD simulation and the molecular mechanics generalized born surface area method, to probe the ligand selectivity of CYP3A7. These results demonstrate that DHEA has the highest binding affinity, and the results of the binding free energy were in accordance with the experimental conclusion that estrone is better than estradiol. Moreover, several key residues responsible for substrate specificity were identified on the enzyme. Arg372 may be the most important residue due to the low interaction energies and the existence of hydrogen bond with DHEA throughout simulation. In addition, a cluster of Phe residues provides a hydrophobic environment to stabilize ligands. This study provides insights into the structural features of CYP3A7, which could contribute to further understanding of related protein structures and dynamics.  相似文献   

19.
Ligand binding and activation of the Ah receptor   总被引:2,自引:0,他引:2  
  相似文献   

20.
We performed first-principles calculations based on the ab initio fragment molecular orbital method on dengue virus envelope protein with a hydrophobic ligand, octyl-β-d-glucose to develop an entry inhibitor. As several polar amino acid residues are present at the edge of the pocket, the glucose moiety was chemically modified with hydrophilic groups. Introduction of both sulfated and carboxylated groups on glucose enhanced not only binding affinity to the protein but also inhibition of dengue virus entry. Octyl-2-O-sulfo β-d-glucuronic acid may serve as a molecular probe to study the dengue virus entry process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号