首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic networks have now joined phylogenetic trees in the center of phylogenetics research. Like phylogenetic trees, such networks canonically induce collections of phylogenetic trees, clusters, and triplets, respectively. Thus it is not surprising that many network approaches aim to reconstruct a phylogenetic network from such collections. Related to the well-studied perfect phylogeny problem, the following question is of fundamental importance in this context: When does one of the above collections encode (i.e. uniquely describe) the network that induces it? For the large class of level-1 (phylogenetic) networks we characterize those level-1 networks for which an encoding in terms of one (or equivalently all) of the above collections exists. In addition, we show that three known distance measures for comparing phylogenetic networks are in fact metrics on the resulting subclass and give the diameter for two of them. Finally, we investigate the related concept of indistinguishability and also show that many properties enjoyed by level-1 networks are not satisfied by networks of higher level.  相似文献   

2.
Phylogenetic networks generalize evolutionary trees, and are commonly used to represent evolutionary histories of species that undergo reticulate evolutionary processes such as hybridization, recombination and lateral gene transfer. Recently, there has been great interest in trying to develop methods to construct rooted phylogenetic networks from triplets, that is rooted trees on three species. However, although triplets determine or encode rooted phylogenetic trees, they do not in general encode rooted phylogenetic networks, which is a potential issue for any such method. Motivated by this fact, Huber and Moulton recently introduced trinets as a natural extension of rooted triplets to networks. In particular, they showed that $\text{ level-1 }$ phylogenetic networks are encoded by their trinets, and also conjectured that all “recoverable” rooted phylogenetic networks are encoded by their trinets. Here we prove that recoverable binary level-2 networks and binary tree-child networks are also encoded by their trinets. To do this we prove two decomposition theorems based on trinets which hold for all recoverable binary rooted phylogenetic networks. Our results provide some additional evidence in support of the conjecture that trinets encode all recoverable rooted phylogenetic networks, and could also lead to new approaches to construct phylogenetic networks from trinets.  相似文献   

3.
Recently, much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here, we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks--a type of network slightly more general than a phylogenetic tree--from triplets. Our algorithm has been made publicly available as the program LEV1ATHAN. It combines ideas from several known theoretical algorithms for phylogenetic tree and network reconstruction with two novel subroutines. Namely, an exponential-time exact and a greedy algorithm both of which are of independent theoretical interest. Most importantly, LEV1ATHAN runs in polynomial time and always constructs a level-1 network. If the data are consistent with a phylogenetic tree, then the algorithm constructs such a tree. Moreover, if the input triplet set is dense and, in addition, is fully consistent with some level-1 network, it will find such a network. The potential of LEV1ATHAN is explored by means of an extensive simulation study and a biological data set. One of our conclusions is that LEV1ATHAN is able to construct networks consistent with a high percentage of input triplets, even when these input triplets are affected by a low to moderate level of noise.  相似文献   

4.
Jansson and Sung showed that, given a dense set of input triplets T (representing hypotheses about the local evolutionary relationships of triplets of taxa), it is possible to determine in polynomial time whether there exists a level-1 network consistent with T, and if so, to construct such a network [24]. Here, we extend this work by showing that this problem is even polynomial time solvable for the construction of level-2 networks. This shows that, assuming density, it is tractable to construct plausible evolutionary histories from input triplets even when such histories are heavily nontree-like. This further strengthens the case for the use of triplet-based methods in the construction of phylogenetic networks. We also implemented the algorithm and applied it to yeast data.  相似文献   

5.
The problem of constructing an optimal rooted phylogenetic network from an arbitrary set of rooted triplets is an NP-hard problem. In this paper, we present a heuristic algorithm called TripNet, which tries to construct a rooted phylogenetic network with the minimum number of reticulation nodes from an arbitrary set of rooted triplets. Despite of current methods that work for dense set of rooted triplets, a key innovation is the applicability of TripNet to non-dense set of rooted triplets. We prove some theorems to clarify the performance of the algorithm. To demonstrate the efficiency of TripNet, we compared TripNet with SIMPLISTIC. It is the only available software which has the ability to return some rooted phylogenetic network consistent with a given dense set of rooted triplets. But the results show that for complex networks with high levels, the SIMPLISTIC running time increased abruptly. However in all cases TripNet outputs an appropriate rooted phylogenetic network in an acceptable time. Also we tetsed TripNet on the Yeast data. The results show that Both TripNet and optimal networks have the same clustering and TripNet produced a level-3 network which contains only one more reticulation node than the optimal network.  相似文献   

6.
Phylogenetic networks were introduced to describe evolution in the presence of exchanges of genetic material between coexisting species or individuals. Split networks in particular were introduced as a special kind of abstract network to visualize conflicts between phylogenetic trees which may correspond to such exchanges. More recently, methods were designed to reconstruct explicit phylogenetic networks (whose vertices can be interpreted as biological events) from triplet data. In this article, we link abstract and explicit networks through their combinatorial properties, by introducing the unrooted analog of level-k networks. In particular, we give an equivalence theorem between circular split systems and unrooted level-1 networks. We also show how to adapt to quartets some existing results on triplets, in order to reconstruct unrooted level-k phylogenetic networks. These results give an interesting perspective on the combinatorics of phylogenetic networks and also raise algorithmic and combinatorial questions.  相似文献   

7.
The general problem of representing collections of trees as a single graph has led to many tree summary techniques. Many consensus approaches take sets of trees (either inferred as separate gene trees or gleaned from the posterior of a Bayesian analysis) and produce a single “best” tree. In scenarios where horizontal gene transfer or hybridization are suspected, networks may be preferred, which allow for nodes to have two parents, representing the fusion of lineages. One such construct is the cluster union network (CUN), which is constructed using the union of all clusters in the input trees. The CUN has a number of mathematically desirable properties, but can also present edges not observed in the input trees. In this paper we define a new network construction, the edge union network (EUN), which displays edges if and only if they are contained in the input trees. We also demonstrate that this object can be constructed with polynomial time complexity given arbitrary phylogenetic input trees, and so can be used in conjunction with network analysis techniques for further phylogenetic hypothesis testing.  相似文献   

8.
An important problem in phylogenetics is the construction of phylogenetic trees. One way to approach this problem, known as the supertree method, involves inferring a phylogenetic tree with leaves consisting of a set X of species from a collection of trees, each having leaf-set some subset of X. In the 1980s, Colonius and Schulze gave certain inference rules for deciding when a collection of 4-leaved trees, one for each 4-element subset of X, can be simultaneously displayed by a single supertree with leaf-set X. Recently, it has become of interest to extend this and related results to phylogenetic networks. These are a generalization of phylogenetic trees which can be used to represent reticulate evolution (where species can come together to form a new species). It has recently been shown that a certain type of phylogenetic network, called a (unrooted) level-1 network, can essentially be constructed from 4-leaved trees. However, the problem of providing appropriate inference rules for such networks remains unresolved. Here, we show that by considering 4-leaved networks, called quarnets, as opposed to 4-leaved trees, it is possible to provide such rules. In particular, we show that these rules can be used to characterize when a collection of quarnets, one for each 4-element subset of X, can all be simultaneously displayed by a level-1 network with leaf-set X. The rules are an intriguing mixture of tree inference rules, and an inference rule for building up a cyclic ordering of X from orderings on subsets of X of size 4. This opens up several new directions of research for inferring phylogenetic networks from smaller ones, which could yield new algorithms for solving the supernetwork problem in phylogenetics.  相似文献   

9.

Phylogenetic networks generalise phylogenetic trees and allow for the accurate representation of the evolutionary history of a set of present-day species whose past includes reticulate events such as hybridisation and lateral gene transfer. One way to obtain such a network is by starting with a (rooted) phylogenetic tree T, called a base tree, and adding arcs between arcs of T. The class of phylogenetic networks that can be obtained in this way is called tree-based networks and includes the prominent classes of tree-child and reticulation-visible networks. Initially defined for binary phylogenetic networks, tree-based networks naturally extend to arbitrary phylogenetic networks. In this paper, we generalise recent tree-based characterisations and associated proximity measures for binary phylogenetic networks to arbitrary phylogenetic networks. These characterisations are in terms of matchings in bipartite graphs, path partitions, and antichains. Some of the generalisations are straightforward to establish using the original approach, while others require a very different approach. Furthermore, for an arbitrary tree-based network N, we characterise the support trees of N, that is, the tree-based embeddings of N. We use this characterisation to give an explicit formula for the number of support trees of N when N is binary. This formula is written in terms of the components of a bipartite graph.

  相似文献   

10.
MOTIVATION: A noble and ultimate objective of phyloinformatic research is to assemble, synthesize, and explore the evolutionary history of life on earth. Data mining methods for performing these tasks are not yet well developed, but one avenue of research suggests that network connectivity dynamics will play an important role in future methods. Analysis of disordered networks, such as small-world networks, has applications as diverse as disease propagation, collaborative networks, and power grids. Here we apply similar analyses to networks of phylogenetic trees in order to understand how synthetic information can emerge from a database of phylogenies. RESULTS: Analyses of tree network connectivity in TreeBASE show that a collection of phylogenetic trees behaves as a small-world network-while on the one hand the trees are clustered, like a non-random lattice, on the other hand they have short characteristic path lengths, like a random graph. Tree connectivities follow a dual-scale power-law distribution (first power-law exponent approximately 1.87; second approximately 4.82). This unusual pattern is due, in part, to the presence of alternative tree topologies that enter the database with each published study. As expected, small collections of trees decrease connectivity as new trees are added, while large collections of trees increase connectivity. However, the inflection point is surprisingly low: after about 600 trees the network suddenly jumps to a higher level of coherence. More stringent definitions of 'neighbour' greatly delay the threshold whence a database achieves sufficient maturity for a coherent network to emerge. However, more stringent definitions of 'neighbour' would also likely show improved focus in data mining. AVAILABILITY: http://treebase.org  相似文献   

11.
Given a distance matrix M that specifies the pairwise evolutionary distances between n species, the phylogenetic tree reconstruction problem asks for an edge-weighted phylogenetic tree that satisfies M, if one exists. We study some extensions of this problem to rooted phylogenetic networks. Our main result is an O(n(2) log n)-time algorithm for determining whether there is an ultrametric galled network that satisfies M, and if so, constructing one. In fact, if such an ultrametric galled network exists, our algorithm is guaranteed to construct one containing the minimum possible number of nodes with more than one parent (hybrid nodes). We also prove that finding a largest possible submatrix M' of M such that there exists an ultrametric galled network that satisfies M' is NP-hard. Furthermore, we show that given an incomplete distance matrix (i.e. where some matrix entries are missing), it is also NP-hard to determine whether there exists an ultrametric galled network which satisfies it.  相似文献   

12.

Phylogenetic networks are a type of leaf-labelled, acyclic, directed graph used by biologists to represent the evolutionary history of species whose past includes reticulation events. A phylogenetic network is tree–child if each non-leaf vertex is the parent of a tree vertex or a leaf. Up to a certain equivalence, it has been recently shown that, under two different types of weightings, edge-weighted tree–child networks are determined by their collection of distances between each pair of taxa. However, the size of these collections can be exponential in the size of the taxa set. In this paper, we show that, if we have no “shortcuts”, that is, the networks are normal, the same results are obtained with only a quadratic number of inter-taxa distances by using the shortest distance between each pair of taxa. The proofs are constructive and give cubic-time algorithms in the size of the taxa sets for building such weighted networks.

  相似文献   

13.
Graphs obtained from a binary leaf labeled ("phylogenetic") tree by adding an edge so as to introduce a cycle provide a useful representation of hybrid evolution in molecular evolutionary biology. This class of graphs (which we call "unicyclic networks") also has some attractive combinatorial properties, which we present. We characterize when a set of binary phylogenetic trees is displayed by a unicyclic network in terms of tree rearrangement operations. This leads to a triple-wise compatibility theorem and a simple, fast algorithm to determine 1-cycle compatibility. We also use generating function techniques to provide closed-form expressions that enumerate unicyclic networks with specified or unspecified cycle length, and we provide an extension to enumerate a class of multicyclic networks.  相似文献   

14.
Evidence is mounting that the structures of trophic networks are governed by migratory movements of interacting species and also by their phylogenetic relationships. Using the largest available trophic network of a large steppe ecosystem, we tested that steppe trophic networks including migratory species are associated with (i) migratory strategy and (ii) phylogenetic relatedness of interacting species: (1) whole graph-level metrics, estimated as modularity, and (2) species-level network metrics, measured as node degree (number of interacting partners), and centrality metrics. We found that (1) a substantial number of links were established by migrant taxa; (2) the phylogenetic signal in network structure was moderate for both consumer and prey nodes; (3) both consumer and prex phylogenies affected modularity, which was modulated by migration strategy; and (4) all species-level graph properties significantly differed between networks including and excluding migratory taxa. In sum, here we show that the structure of steppe trophic networks is primarily governed by migratory strategies and to a lesser extent, by phylogenetic relatedness, using the largest available food web representative for steppe ecology and migration biology.  相似文献   

15.
The need for structures capable of accommodating complex evolutionary signals such as those found in, for example, wheat has fueled research into phylogenetic networks. Such structures generalize the standard model of a phylogenetic tree by also allowing for cycles and have been introduced in rooted and unrooted form. In contrast to phylogenetic trees or their unrooted versions, rooted phylogenetic networks are notoriously difficult to understand. To help alleviate this, recent work on them has also centered on their “uprooted” versions. By focusing on such graphs and the combinatorial concept of a split system which underpins an unrooted phylogenetic network, we show that not only can a so-called (uprooted) 1-nested network N be obtained from the Buneman graph (sometimes also called a median network) associated with the split system \(\Sigma (N)\) induced on the set of leaves of N but also that that graph is, in a well-defined sense, optimal. Along the way, we establish the 1-nested analogue of the fundamental “splits equivalence theorem” for phylogenetic trees and characterize maximal circular split systems.  相似文献   

16.
Using indirect protein-protein interactions for protein complex prediction   总被引:1,自引:0,他引:1  
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.  相似文献   

17.
Phylogenetic networks are a generalization of phylogenetic trees that are used to represent non-tree-like evolutionary histories that arise in organisms such as plants and bacteria, or uncertainty in evolutionary histories. An unrooted phylogenetic network on a non-empty, finite set X of taxa, or network, is a connected, simple graph in which every vertex has degree 1 or 3 and whose leaf set is X. It is called a phylogenetic tree if the underlying graph is a tree. In this paper we consider properties of tree-based networks, that is, networks that can be constructed by adding edges into a phylogenetic tree. We show that although they have some properties in common with their rooted analogues which have recently drawn much attention in the literature, they have some striking differences in terms of both their structural and computational properties. We expect that our results could eventually have applications to, for example, detecting horizontal gene transfer or hybridization which are important factors in the evolution of many organisms.  相似文献   

18.
In this paper, we investigate a conjecture by Arndt von Haeseler concerning the Maximum Parsimony method for phylogenetic estimation, which was published by the Newton Institute in Cambridge on a list of open phylogenetic problems in 2007. This conjecture deals with the question whether Maximum Parsimony trees are hereditary. The conjecture suggests that a Maximum Parsimony tree for a particular (DNA) alignment necessarily has subtrees of all possible sizes which are most parsimonious for the corresponding subalignments. We answer the conjecture affirmatively for binary alignments on 5 taxa but also show how to construct examples for which Maximum Parsimony trees are not hereditary. Apart from showing that a most parsimonious tree cannot generally be reduced to a most parsimonious tree on fewer taxa, we also show that compatible most parsimonious quartets do not have to provide a most parsimonious supertree. Last, we show that our results can be generalized to Maximum Likelihood for certain nucleotide substitution models.  相似文献   

19.
We describe a method that will reconstruct an unrooted binary phylogenetic level-1 network on \(n\) taxa from the set of all quartets containing a certain fixed taxon, in \(O(n^3)\) time. We also present a more general method which can handle more diverse quartet data, but which takes \(O(n^6)\) time. Both methods proceed by solving a certain system of linear equations over the two-element field \(\mathrm{GF}(2)\) . For a general dense quartet set, i.e. a set containing at least one quartet on every four taxa, our \(O(n^6)\) algorithm constructs a phylogenetic level-1 network consistent with the quartet set if such a network exists and returns an \(O(n^2)\) -sized certificate of inconsistency otherwise. This answers a question raised by Gambette, Berry and Paul regarding the complexity of reconstructing a level-1 network from a dense quartet set, and more particularly regarding the complexity of constructing a cyclic ordering of taxa consistent with a dense quartet set.  相似文献   

20.
A classical result in phylogenetic trees is that a binary phylogenetic tree adhering to the molecular clock hypothesis exists if and only if the matrix of distances between taxa is ultrametric. The ultrametric condition is very restrictive. In this paper we study phylogenetic networks that can be constructed assuming the molecular clock hypothesis. We characterize distance matrices that admit such networks for 3 and 4 taxa. We also design two algorithms for constructing networks optimizing the least-squares fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号