首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the potential effect of porcine plasma protein hydrolysates (PPPH) coupled with Tween 20 on the physical and oxidative stability of canola oil-in-water emulsions (10% wt. lipid, pH 7.0). The PPPH obtained via limited alcalase-hydrolysis (60 min) possessed the highest emulsifying activity index and emulsion stability index (P?<?0.05). Emulsions stabilized with PPPH alone were less stable than those prepared with PPPH and Tween 20. However, a lower concentration of PPPH (2.5 mg/mL) combined with Tween 20 formed the most stable emulsions, which is mainly due to competitive adsorption present at the interface. Additionally, compared with PPPH-free emulsions, the addition of PPPH was able to retard lipid oxidation, showing up to an 8.51% decrease in the formation of conjugated dienes and a 22.08% decrease in thiobarbituric acid-reactive substances after 10 days of storage (P?<?0.05). This is mainly attributed to distinct antioxidant amino acid profiles and the distribution of peptides at the interface. Therefore, our results indicate that PPPH derived from limited hydrolysis could be used as both co-emulsifiers and antioxidative compounds in food emulsions.  相似文献   

2.
In the present study, northern whiting fish (Sillago sihama) muscle was hydrolyzed with gastrointestinal enzymes (pepsin, trypsin and α-chymotrypsin) separately and the resulted protein hydrolysates were tested for antioxidant activities using DPPH radical scavenging activity and reducing power assays. The protein hydrolysate obtained from trypsin exhibited highest antioxidant activity. Further, it was fractionated by consecutive chromatography using anion exchange and gel filtration chromatography; the separated fractions were collected and evaluated for antioxidant activity. The results showed that fraction 2 exhibited high chelating activity (73.15 % at 0.5 mg/mL) and best radical scavenging activity for DPPH radical (55.16 % at 0.5 mg/mL), ABTS radical (57.98 % at 50 μg/mL), superoxide radical (39.55 % at 200 μg/mL) and hydroxyl radical (51.33 % at 100 μg/mL). In addition, the active fraction showed strong antioxidant activity in the inhibition of linoleic acid autooxidation (60 % at 0.5 mg/mL) and also it exhibited significant protective effect on DNA damage caused by hydroxyl radicals. The size of the active fraction was found to be <360.2 Da using mass spectroscopy. These results demonstrate that muscle protein hydrolysate from northern whiting fish could be a best alternative to produce natural antioxidant peptides.  相似文献   

3.
Influence of oligomer chain length on the antioxidant activity of procyanidins   总被引:11,自引:0,他引:11  
The antioxidant activity of catechin monomers and procyanidin (dimers to hexamers) fractions purified from cocoa was studied in two in vitro systems: liposomes and human LDL. Liposome oxidation (evaluated as formation of 2-thiobarbituric acid reactive substances) was initiated with 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), 2,2'-azobis (2,4-dimethylvaleronitrile) (AMVN), iron/ascorbate, or UV-C; LDL oxidation (evaluated as formation of conjugated dienes) was initiated with Cu(2+) or AAPH. Catechin monomers and procyanidin fractions inhibited both liposome and LDL oxidation. Monomers, dimers, and trimers fractions were the most effective antioxidants when liposome oxidation was initiated in the aqueous phase. When oxidation was initiated in the lipid domains, higher molecular weight procyanidins were the most effective. All fractions significantly inhibited Cu-mediated LDL oxidation; no significant effect of procyanidin molecular weight was observed. The hexamer fraction was the least effective with respect to preventing AAPH initiated LDL oxidation. Results reported herein give further evidence on the influence of the oligomer chain length on the antioxidant protection by procyanidins.  相似文献   

4.
The impact of gum arabic (GA), ghatti gum (GG), and sugar beet pectin (SBP) on the digestion rate of emulsified lipids is investigated in vitro under model duodenal digestion condition. The aim was to understand the role of the interfacial layer surrounding the lipid droplets on lipid hydrolysis in order to control lipid digestion. The emulsifier concentration required to provide the same emulsion droplet size decreased in the order: GA > GG > SBP, demonstrating the best emulsifying activity of SBP. The rate and extent of free fatty acid release during lipid digestion did not differ significantly among the three types of gums in emulsions with D[2,3] < 2 μm. However, considerable difference was observed in emulsions with D[2,3] > 2 μm, and the digestive rate decreased in the order: GA > SBP > GG. The difference in digestion rate was attributed to the stability of the emulsified lipid droplets in the stimulated intestinal juice and the resistance of interfacial layer against displacement by bile salts. The difference of resisting against displacement by bile salts for the interfacial layers was detected with bile salts concentration of 0.025 mg/mL, and all of the pre-adsorbed emulsifiers could be completely displaced from interface by bile salts at 5 mg/mL. Emulsions with SBP were susceptible to Ca2+ and Na+ in simulated intestinal juice, resulting in the flocculation and coalescence of emulsion droplets. A reduction of the surface area of lipids would contribute to a slow digestion. Emulsion stabilized by GG was very effective at retarding lipolysis mainly due to the affinity of linked protein moieties of GG and its hydrophobic binding with bile salts. The knowledge gained in the study has important implications in designing proper emulsion-based systems for controlling lipid digestibility at specific sites within the gastrointestinal tract.  相似文献   

5.
Antioxidants have become an important subject of study as an active ingredient for cosmetics and preservatives for food. We synthesized antioxidative peptide conjugates of hydroxycinnamic acids (HCAs) such as ferulic acid (FA), caffeic acid (CA), and sinapic acid (SA) by SPPS method. We measured their potential antioxidant properties by 2,2‐diphenyl‐1‐picrylhydrazyl radical (DPPH) scavenging test and lipid autoxidation inhibition test. When the antioxidative peptides, such as glutathione analogue (GS(Bzl)H) and carnosine (CAR), were conjugated to HCAs, their antioxidative activities were enhanced significantly. CA‐peptides exhibited the highest free radical scavenging activity by the DPPH test, and showed good antioxidative activity in the lipid autoxidation test. FA‐ and SA‐peptides showed excellent antioxidative activity in the lipid autoxidation test. Furthermore, we demonstrated a synergistic antioxidative activity of HCA‐peptide conjugates by comparing their antioxidative activity with that of a simple mixture of HCAs and the antioxidant peptides. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Lipids of the radio-resistant bacterium Deinococcus radiophilus were tested for their antioxidant properties. The crude lipid extract showed a significant antioxidant effect in linoleic acid emulsion. The crude extract was separated to polar and non-polar lipid fractions. The non-polar fraction showed an antioxidant effect in both suspensions and emulsions of linoleic acid, and inhibition of oxidation in a β-carotene emulsion. Lipids of the non-polar fraction were separated and their antioxidant activity was determined in a β-carotene emulsion; the lipid that was marked NP9 showed the highest antioxidant effect. Lipid NP9 inhibited oxidation in a β-carotene emulsion in the concentration range of 5–51 ppm. It is suggested that the antioxidant activity of lipids of D. radiophilus contribute to its radio-resistance.  相似文献   

7.
Mushrooms have been highly regarded as possessing enormous nutritive and medicinal values. In the present study, we evaluated the anti-oxidative and anti-atherosclerotic potential of shiitake mushroom (Lentinula edodes) using its solvent–solvent partitioned fractions that consisted of methanol:dichloromethane (M:DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA) and aqueous residue (AQ). The hexane fraction (1 mg/mL) mostly scavenged (67.38%, IC50 0.55 mg/mL) the 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical, contained the highest reducing capacity (60.16 mg gallic acid equivalents/g fraction), and most potently inhibited lipid peroxidation (67.07%), low density lipo-protein oxidation and the activity of 3-hydroxy 3-methyl glutaryl co-enzyme A reductase (HMGR). GC–MS analyses of the hexane fraction identified α-tocopherol (vitamin E), oleic acid, linoleic acid, ergosterol and butyric acid as the bio-functional components present in L. edodes. Our findings suggest that L. edodes possesses anti-atherosclerotic bio-functionality that can be applied as functional food-based therapeutics against cardiovascular diseases.  相似文献   

8.
Red wine and its components have been shown to possess cardioprotective and anti-atherogenic effects. Additionally, red wine and many of its components like catechin, epicatechin, rutin, transresveratrol and quercetin possess antioxidant properties. Oxidized low density lipoprotein (LDL) is involved in the development of an atherosclerotic lesion. Red wine, therefore, may be anti-atherogenic because of its antioxidant effects on LDL modification. This study examined the antioxidant effects of catechin, epicatechin, rutin, transresveratrol, quercetin and Merlot wines on LDL oxidation. Merlot was chosen because although other red wines have been tested, limited information exists for this variety. Oxidation was carried out with AAPH (2,2-Azo-bis(2-amidinopropane) dihydrochloride) and AMVN (2,2-Azo-bis(2,4-dimethylvaleronitrile)), as water and lipid soluble peroxyl radical generating systems (FRGS), respectively. This allowed us to determine the lipophilic antioxidant characteristics of the wine and its components. Conjugated diene assays were used to measure LDL oxidation over 6 hrs. In an AAPH system, all polyphenolic compounds except transresveratrol displayed an antioxidant effect. LDL oxidation by AAPH was also inhibited by aliquots of Merlot wine. No antioxidant effects were observed in an AMVN environment except for a mild antioxidant effect by quercetin. Surprisingly, incubation of LDL with Merlot wine strongly protected against oxidation by AMVN. In summary, the five phenolic compounds displayed antioxidant effects in a water soluble free radical generating system, but only quercetin showed this in a lipid soluble one. However, red wine inhibited LDL oxidation by both water and lipid soluble free radical generating systems. Our data suggest, therefore, that red wines contain unidentified antioxidants that provide protection against LDL oxidation within a lipid soluble environment. (Mol Cell Biochem 263: 211–215, 2004)  相似文献   

9.
Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion–ascorbate combinations was investigated in aerated and incubated emulsions at 37 °C and pH 7. LA peroxidation induced by copper(II)–ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin > catechin ≥ quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33 V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)–Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure–activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions.  相似文献   

10.
Pei  Yaqiong  Deng  Qianchun  McClements  David Julian  Li  Jing  Li  Bin 《Food biophysics》2020,15(4):433-441

The effects of phytic acid on the physical and oxidative stability of flaxseed oil-in-water emulsions containing whey protein-coated lipid droplets were investigated. The surface potential, particle size, microstructure, appearance, and oxidation of these emulsions were monitored when they were stored at pH 3.5 and 7.0 for 25 days in the dark (37 °C). The phytic acid and protein-coated lipid droplets had similar charges (both negative) at pH 7.0, but had opposite charges (negative and positive) at pH 3.5. At pH 7.0, the addition of phytic acid had no impact on the physical stability of the emulsions but significantly improved their oxidative stability, which was attributed to its ability to sequester pro-oxidant transition metals (iron ions). At pH 3.5, extensive droplet aggregation and creaming occurred in the emulsions containing phytic acid, which was ascribed to charge neutralization and ion bridging. The oxidative stability of the acidified emulsions, however, still increased after addition of phytic acid, which was again attributed to its ability to chelate iron ions. Interestingly, the antioxidant activity of phytic acid decreased as its level was increased. Our results suggest that phytic acid may be used as a natural antioxidant to improve the oxidative stability of food emulsions containing polyunsaturated fatty acids, but its level must be carefully controlled.

  相似文献   

11.
Pimenta pseudocaryophyllus is a Brazilian native plant that presents high concentrations of flavonoids and other polyphenolic compounds. Herein, we evaluated: (1) the chemical properties of P. pseudocaryophyllus ethanolic extract (PPE), (2) the in vitro antioxidant activity (AA) of PPE and of two different topical formulations (F1 and F2) containing PPE, (3) physico-chemical and functional stability, (4) in vitro release of PPE, and (5) in vivo capacity of formulations to prevent UV-B irradiation-induced skin damage. Results show that the polyphenol and flavonoid contents in PPE were 199.33 and 28.32 mg/g, respectively, and HPLC results show the presence of eugenol, tannic acid, and rutin. Evaluation of the in vitro AA of PPE demonstrated a dose-dependent effect and an IC50 of 4.75 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3.0 μg/mL in 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The ferric-reducing antioxidant power (FRAP assay) was 0.046 μmol/L trolox equivalent/μg/mL of extract. Among the AA, only the capacity to scavenge DPPH radical of PPE was maintained in F1 and F2. In addition, both formulations satisfactorily released the extract. The evaluation of the functional stability of F1 and F2 did not demonstrate loss of activity by storage at room temperature and at 4°C/6 months. In irradiated mice, treatment with F1 and F2 added with PPE significantly increased the capacity to scavenge ABTS radical and the FRAP of skin compared to vehicle-treated mice. In conclusion, the present results suggest that formulations containing PPE may be a topical source of antioxidant compounds to decrease oxidative damages of the skin.  相似文献   

12.
beta-Carotene, alpha-tocopherol, and ascorbic acid were tested for their ability to inhibit, enhance, or react synergistically with O(2) (15, 150, 760 torr) and, 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH) or 1,1'-azobis (cyclohexane-carbonitrile) (ACCN) in isolated rat liver microsomes. beta-Carotene did not protect against lipid peroxidation, i.e., malondialdehyde (MDA) formation, in microsomal samples incubated at 37 degrees C with aqueous soluble AAPH at all added beta-carotene concentrations and oxygen tensions. More MDA (16%, p < 0.001) was produced at 15 torr of O(2,) and 160 nmol/mg protein of beta-carotene compared to respective vehicle control. Individually, alpha-tocopherol and ascorbic acid exhibited antioxidant protection (ascorbic acid &z.Gt; alpha-tocopherol); however, a mixture of both compounds was no more protective than ascorbic acid alone. beta-Carotene demonstrated a concentration-dependent antioxidant affect at 15 torr O(2) (p < 0.01); but a prooxidant effect at higher O(2) at 150 and 760 torr (>57%, p < 0.001) by lipid-soluble ACCN. alpha-Tocopherol exhibited concentration-dependent inhibitory effects on microsomal MDA formation at all oxygen tensions, but was most effective under 150 torr. Ascorbic acid demonstrated a concentration-dependent antioxidant effect only at 150 torr. ACCN-induced lipid peroxidation was no greater for the combination of the three compounds than ascorbic acid added alone. Thus, antioxidant or prooxidant activities for beta-carotene, alpha-tocopherol, and ascorbic acid in microsomal suspensions are related to O(2) tension, solubility, antioxidant concentrations and are governed by complex interactions. Differences between AAPH- and ACCN-induced lipid peroxidation are related to differences in lipid solubility.  相似文献   

13.
This study was designed to define and compare the antioxidant and cytotoxic properties of polar extracts obtained from basal leaves (It-BL), cauline leaves (It-CL) and flowers (It-F) of Isatis tinctoria L. growing wild around Acireale (Sicily, Italy). The phenolic profile was characterized by HPLC-PDA-ESI-MS analysis and the correlation between phenolic content and the observed biological effects was established. Further, LC/MS analysis showed that the extracts contain glucosinolates at very low concentrations. The antioxidant activity of the extracts was tested in vitro; It-F was the most effective in the DPPH test (IC50 = 0.437 ± 0.003 mg/mL), whilst It-CL showed the best reducing power (1.546 ± 0.006 ASE/mL) and ferrous ions chelating activity (IC50 = 0.564 ± 0.011 mg/mL). The extracts exhibited anti-proliferative effects against three different human thyroid carcinoma cell lines, and It-BL displayed the strongest activity; particularly, it markedly inhibited the growth of CAL-62 cells, causing nearly 85% reduction of viability at the highest tested dose. No cytotoxicity against Artemia salina was observed. The results of our investigations indicate that the polar extracts obtained from I. tinctoria are a potential source of antioxidant and anticancer compounds, which could be suitable for nutraceutical and therapeutic applications.  相似文献   

14.
In this study several investigations and tests were performed to determine the antioxidant activity and the acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum aqueous extracts (10% mass) and ethanolic extracts (10% mass and 70% ethanol), respectively. Moreover, for each type of the prepared extracts of P. officinalis and of C. umbellatum the content in the biologically active compounds – polyphenols, flavones and proanthocyanidins was determined. The antioxidant activity was assessed using two methods, namely the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and reducing power assay. The analyzed plant extracts showed a high acetylcholinesterase and tyrosinase inhibitory activity in the range of 72.24–94.24% (at the highest used dose – 3 mg/mL), 66.96% and 94.03% (at 3 mg/mL), respectively correlated with a high DPPH radical inhibition – 70.29–84.9% (at 3 mg/mL). These medicinal plants could provide a potential natural source of bioactive compounds and could be beneficial to the human health, especially in the neurodegenerative disorders and as sources of natural antioxidants in food industry.  相似文献   

15.
This report compared the phenolic compounds and antioxidant activity of the leaves, flowers, and stems of Potentilla fruticosa L. collected from two main production areas of P. R. China (Taibai Mountains and the Qinghai Huzhu Northern Mountains). The results indicated that there were significant differences in the phenol contents and antioxidant activities among the different organs and between the two productions. High‐performance liquid‐chromatography analysis indicated that hyperoside, (+)‐catechin, ellagic acid, and rutin were the primary compounds in leaves and flowers; for stems, the content of six phenolic compounds, from two productions, were the lowest. The 1,1‐diphenyl‐2‐picryl hydrazyl (DPPH), 2,2‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) di‐ammonium salt (ABTS), ferric reducing power (FRAP), lipid peroxidation assays, and microbial test system (MTS) were used to evaluate the antioxidant activity. The results demonstrated that the leaves from two productions exhibited powerful antioxidant activity than other organs, which did not significantly differ from that of the positive control (rutin), followed by the flowers and stems. The correlation between the content of phytochemicals and the antioxidant activities of different organs showed that the total phenol, tannin, hyperoside, and (+)‐catechin contents may influence the antioxidant activity, and these compounds can be used as markers for the quality control of P. fruticosa.  相似文献   

16.
Hyperglycemia and mitochondrial ROS overproduction have been identified as key factors involved in the development of diabetic nephropathy. This has encouraged the search for strategies decreasing glucose levels and long-term improvement of redox status of glutathione, the main antioxidant counteracting mitochondrial damage. Previously, we have shown that avocado oil improves redox status of glutathione in liver and brain mitochondria from streptozotocin-induced diabetic rats; however, the long-term effects of avocado oil and its hypoglycemic effect cannot be evaluated because this model displays low survival and insulin depletion. Therefore, we tested during 1 year the effects of avocado oil on glycemia, ROS levels, lipid peroxidation and glutathione status in kidney mitochondria from type 2 diabetic Goto-Kakizaki rats. Diabetic rats exhibited glycemia of 120–186 mg/dL the first 9 months with a further increase to 250–300 mg/dL. Avocado oil decreased hyperglycemia at intermediate levels between diabetic and control rats. Diabetic rats displayed augmented lipid peroxidation and depletion of reduced glutathione throughout the study, while increased ROS generation was observed at the 3rd and 12th months along with diminished content of total glutathione at the 6th and 12th months. Avocado oil ameliorated all these defects and augmented the mitochondrial content of oleic acid. The beneficial effects of avocado oil are discussed in terms of the hypoglycemic effect of oleic acid and the probable dependence of glutathione transport on lipid peroxidation and thiol oxidation of mitochondrial carriers.  相似文献   

17.
The inhibitory effect of anthocyanins has been investigated in the peroxidation of linoleic acid in micelles in the presence and in the absence of (+)-catechin. The peroxidation was initiated by thermal decomposition of 2,2(')-azobis[2-(2-imidazolin-2-yl)propane], and the kinetics of peroxidation were followed by measuring the rate of oxygen consumption and the rate of disappearance of the antioxidant. The analysis of the antioxidant effect of various anthocyanins, alone or in the presence of catechin, demonstrates that catechin, which is relatively inefficient at inhibiting linoleic acid oxidation, regenerates the highly efficient antioxidant malvidin 3-glucoside and, at a lower extent, peonidin 3-glucoside. The malvidin 3-glucoside recycling by catechin strongly increases the antioxidant efficiency of these two antioxidants. This protective mechanism appears specific for malvidin and peonidin 3-glucosides. The high unpaired spin density of the phenolic O atoms in the radicals generated by these anthocyanins, calculated by the semiempirical quantum chemical AM1 method, may explain the observed behavior.  相似文献   

18.
Antioxidants have been utilized in both the food and cosmetics industries to neutralize the activities of reactive oxygen species (ROS) and free radicals. Histidine-containing peptides are powerful antioxidants that exist in nature. Additionally, hydroxycinnamic acid (HCA)-peptide conjugates exhibit a synergistically enhanced antioxidative activity. Thus, caffeic acid (CA), a natural antioxidant, was conjugated to histidine-containing dipeptides (His dipeptides) in order to develop better antioxidants. The antioxidative activities were measured using 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test and lipid peroxidation test with ferric thiocyanate method. Some of the CA-His dipeptides exhibited better radical scavenging activities than CA, and all of the CA-His dipeptides showed enhanced lipid peroxidation inhibitory activities. His dipeptide enhanced the antioxidative activity of CA, and the position of histidine also affected the antioxidative activity of the compounds. CA-proline-histidine amide (CA-Pro-His-NH2) exhibited the highest activity in both the free radical scavenging test and the lipid peroxidation inhibition test.  相似文献   

19.
Sonchus oleraceus (L.) L. (Asteraceae) is an edible wild plant, known for its uses in traditional medicine. The aim of this study is to explore the phytochemical composition of the aerial parts (AP) and roots (R) of aqueous extracts of Sonchus oleraceus L. growing in Tunisia, using liquid chromatography-tandem mass spectrometry(LC/MS/MS), and determine the content of polyphenols and antioxidant activities. Results showed that aqueous extracts of AP and R contained, respectively, 195.25±33 μg/g and 118.66±14 μg/g gallic acid equivalent (GAE), and 52.58±7 μg/g and 3.2±0.3μg/g quercetin equivalent. AP and R extracts also contained tannins, 581.78±33 μg/g and 948.44±19 μg/g GAE. The AP extract in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging activities, hydroxyl radical scavenging (OH−) and in cupric reducing antioxidant activity (CUPRAC) assays were respectively 0.325±0.036 mg/mL, 0.053±0.018 mg/mL, 0.696±0.031 mg/mL and 60.94±0.004 μMTE/g, while the R extract using the same assays showed, 0.209±0.052 mg/mL, 0.034±0.002 mg/mL, 0.444±0.014 mg/mL and 50.63±0.006 μM Trolox equivalent/g, respectively. A total of 68 compounds were tentatively identified by LC/MS/MS in both extracts in which quinic acid, pyrogallol, osthrutin, piperine, gentisic acid, fisetin, luteolin, caffeic acid, gingerol, were the most abundant in the LC/MS/MS spectrum. Many of these metabolites were found for the first time in Tunisian Sonchus oleraceus L. which may take account for the antioxidant activities exhibited by the plant.  相似文献   

20.
The beneficial effects of oyster extract against various disorders and diseases induced by oxidative stress have aroused great interest. In this article, ultrasonic-assisted enzymolysis was employed to produce polysaccharides of Crassostrea hongkongensis (CHP) and their antioxidant activity was investigated. A single-factor experiment and then a four-factor, three-level Box–Behnken design were first used to optimize ultrasonic extraction for polysaccharides. On the basis of ridge analysis, the optimum conditions are obtained as ultrasonic treatment time of 24 min, power of 876 W, temperature of 49°C, and material–solvent ratio of 1:6 (w/v). It is found that ultrasound pretreatment before protease hydrolysis was a great help to improve CHP yield and purity, especially more favorable with flavorzyme, neutrase, alcalase, and pepsin. Furthermore, the polysaccharide fraction, which was obtained by ultrasonic pretreatment and then alcalase hydrolysis at the conditions of 3000 U/g, 55°C, pH 8.0, for 4 hr, exhibited an obvious scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical (98.48 ± 0.55% and 99.20 ± 0.12%, respectively) and a lenoleic acid peroxidation inhibition effect (85.48 ± 0.65%) at a concentration of 5.0 mg/mL. These results reveal the potential application of CHP in functional food and nutraceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号