首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A system is constructed to automatically infer a genetic network byapplication of graphical Gaussian modeling to the expression profiledata. Our system is composed of two parts: one part is automaticdetermination of cluster boundaries of profiles in hierarchicalclustering, and another part is inference of a genetic network byapplication of graphical Gaussian modeling to the clustered profiles.Since thousands of or tens of thousands of gene expression profiles aremeasured under only one hundred conditions, the profiles naturally showsome similar patterns. Therefore, a preprocessing for systematicallyclustering the profiles is prerequisite to infer the relationship betweenthe genes. For this purpose, a method for automatic determination ofcluster boundaries is newly developed without any biological knowledgeand any additional analyses. Then, the profiles for each cluster areanalyzed by graphical Gaussian modeling to infer the relationship betweenthe clusters. Thus, our system automatically provides a graph betweenclusters only by input the profile data. The performance of the presentsystem is validated by 2467 profiles from yeast genes. The clusters andthe genetic network obtained by our system are discussed in terms of thegene function and the known regulatory relationship between genes.  相似文献   

2.
MOTIVATION: Genetic networks are often described statistically using graphical models (e.g. Bayesian networks). However, inferring the network structure offers a serious challenge in microarray analysis where the sample size is small compared to the number of considered genes. This renders many standard algorithms for graphical models inapplicable, and inferring genetic networks an 'ill-posed' inverse problem. METHODS: We introduce a novel framework for small-sample inference of graphical models from gene expression data. Specifically, we focus on the so-called graphical Gaussian models (GGMs) that are now frequently used to describe gene association networks and to detect conditionally dependent genes. Our new approach is based on (1) improved (regularized) small-sample point estimates of partial correlation, (2) an exact test of edge inclusion with adaptive estimation of the degree of freedom and (3) a heuristic network search based on false discovery rate multiple testing. Steps (2) and (3) correspond to an empirical Bayes estimate of the network topology. RESULTS: Using computer simulations, we investigate the sensitivity (power) and specificity (true negative rate) of the proposed framework to estimate GGMs from microarray data. This shows that it is possible to recover the true network topology with high accuracy even for small-sample datasets. Subsequently, we analyze gene expression data from a breast cancer tumor study and illustrate our approach by inferring a corresponding large-scale gene association network for 3883 genes.  相似文献   

3.

With the increasing availability of microbiome 16S data, network estimation has become a useful approach to studying the interactions between microbial taxa. Network estimation on a set of variables is frequently explored using graphical models, in which the relationship between two variables is modeled via their conditional dependency given the other variables. Various methods for sparse inverse covariance estimation have been proposed to estimate graphical models in the high-dimensional setting, including graphical lasso. However, current methods do not address the compositional count nature of microbiome data, where abundances of microbial taxa are not directly measured, but are reflected by the observed counts in an error-prone manner. Adding to the challenge is that the sum of the counts within each sample, termed “sequencing depth,” is an experimental technicality that carries no biological information but can vary drastically across samples. To address these issues, we develop a new approach to network estimation, called BC-GLASSO (bias-corrected graphical lasso), which models the microbiome data using a logistic normal multinomial distribution with the sequencing depths explicitly incorporated, corrects the bias of the naive empirical covariance estimator arising from the heterogeneity in sequencing depths, and builds the inverse covariance estimator via graphical lasso. We demonstrate the advantage of BC-GLASSO over current approaches to microbial interaction network estimation under a variety of simulation scenarios. We also illustrate the efficacy of our method in an application to a human microbiome data set.

  相似文献   

4.
MGraph: graphical models for microarray data analysis   总被引:2,自引:0,他引:2  
  相似文献   

5.
Gene co-expression networks provide an important tool for systems biology studies. Using microarray data from the Array Express database, we constructed an Arabidopsis gene co-expression network, termed At GGM2014, based on the graphical Gaussian model, which contains 102,644 co-expression gene pairs among 18,068 genes. The network was grouped into 622 gene co-expression modules. These modules function in diverse house-keeping, cell cycle, development, hormone response, metabolism, and stress response pathways. We developed a tool to facilitate easy visualization of the expression patterns of these modules either in a tissue context or their regulation under different treatment conditions. The results indicate that at least six modules with tissue-specific expression pattern failed to record modular regulation under various stress conditions. This discrepancy could be best explained by the fact that experiments to study plant stress responses focused mainly on leaves and less on roots, and thus failed to recover specific regulation pattern in other tissues. Overall, the modular structures revealed by our network provide extensive information to generate testable hypotheses about diverse plant signaling pathways. At GGM2014 offers a constructive tool for plant systems biology studies.  相似文献   

6.
As the Human Genome Project and other genome projects experience remarkable success and a flood of biological data is produced by means of high-throughout sequencing techniques, detection of horizontal gene transfer (HGT) becomes a promising field in bioinformatics. This review describes two freeware programs: T-REX for MS Windows and RHOM for Linux. T-REX is a graphical user interface program that offers functions to reconstruct the HGT network among the donor and receptor hosts from the gene and species distance matrices. RHOM is a set of command-line driven programs used to detect HGT in genomes. While T-REX impresses with a user-friendly interface and drawing of the reticulation network, the strength of RHOM is an extensive statistical framework of genome and the graphical display of the estimated sequence position probabilities for the candidate horizontally transferred genes.  相似文献   

7.
Rost U  Kummer U 《Systems biology》2004,1(1):184-189
SimWiz is a Java package that aims at visualising data resulting from different kinds of biochemical systems simulations in a clear and easy-to-survey way. In addition, information regarding the topology of the biochemical network is preserved by this visualisation. This is achieved by animating a graphical representation of the respective biochemical network.  相似文献   

8.
This article describes the integration of programs from the widely used CCP4 macromolecular crystallography package into a modern data flow visualization environment (application visualization system [AVS]), which provides a simple graphical user interface, a visual programming paradigm, and a variety of 1-, 2-, and 3-D data visualization tools for the display of graphical information and the results of crystallographic calculations, such as electron density and Patterson maps. The CCP4 suite comprises a number of separate Fortran 77 programs, which communicate via common file formats. Each program is encapsulated into an AVS macro module, and may be linked to others in a data flow network, reflecting the nature of many crystallo-graphic calculations. Named pipes are used to pass input parameters from a graphical user interface to the program module, and also to intercept line printer output, which can be filtered to extract graphical information and significant numerical parameters. These may be passed to downstream modules, permitting calculations to be automated if no user interaction is required, or giving the user the opportunity to make selections in an interactive manner.  相似文献   

9.
The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure prior-a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental data or high-level topological features. A key topological consideration is that a wide range of cellular networks are approximately scale-free, meaning that the fraction, , of nodes in a network with degree is roughly described by a power-law with exponent between and . The standard practice, however, is to utilize a random structure prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to recover random networks. We then estimate a gene association network from gene expression data taken from a breast cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6, which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the breast cancer expression data underscores the value of the scale-free structure prior as an instrument to aid in the identification of candidate hub genes with the potential to direct the hypotheses of molecular biologists, and thus drive future experiments.  相似文献   

10.
We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network.  相似文献   

11.
In this report we describe a novel graphically oriented method for pathway modeling and a software package that allows for both modeling and visualization of biological networks in a user-friendly format. The Visinets mathematical approach is based on causal mapping (CMAP) that has been fully integrated with graphical interface. Such integration allows for fully graphical and interactive process of modeling, from building the network to simulation of the finished model. To test the performance of Visinets software we have applied it to: a) create executable EGFR-MAPK pathway model using an intuitive graphical way of modeling based on biological data, and b) translate existing ordinary differential equation (ODE) based insulin signaling model into CMAP formalism and compare the results. Our testing fully confirmed the potential of the CMAP method for broad application for pathway modeling and visualization and, additionally, showed significant advantage in computational efficiency. Furthermore, we showed that Visinets web-based graphical platform, along with standardized method of pathway analysis, may offer a novel and attractive alternative for dynamic simulation in real time for broader use in biomedical research. Since Visinets uses graphical elements with mathematical formulas hidden from the users, we believe that this tool may be particularly suited for those who are new to pathway modeling and without the in-depth modeling skills often required when using other software packages.  相似文献   

12.
13.
FANMOD: a tool for fast network motif detection   总被引:8,自引:0,他引:8  
SUMMARY: Motifs are small connected subnetworks that a network displays in significantly higher frequencies than would be expected for a random network. They have recently gathered much attention as a concept to uncover structural design principles of complex biological networks. FANMOD is a tool for fast network motif detection; it relies on recently developed algorithms to improve the efficiency of network motif detection by some orders of magnitude over existing tools. This facilitates the detection of larger motifs in bigger networks than previously possible. Additional benefits of FANMOD are the ability to analyze colored networks, a graphical user interface and the ability to export results to a variety of machine- and human-readable file formats including comma-separated values and HTML.  相似文献   

14.
In this paper, we review the central concepts and implementations of tools for working with network structures in Bioconductor. Interfaces to open source resources for visualization (AT&T Graphviz) and network algorithms (Boost) have been developed to support analysis of graphical structures in genomics and computational biology. AVAILABILITY: Packages graph, Rgraphviz, RBGL of Bioconductor (www.bioconductor.org).  相似文献   

15.
16.
Large-scale microarray gene expression data provide the possibility of constructing genetic networks or biological pathways. Gaussian graphical models have been suggested to provide an effective method for constructing such genetic networks. However, most of the available methods for constructing Gaussian graphs do not account for the sparsity of the networks and are computationally more demanding or infeasible, especially in the settings of high dimension and low sample size. We introduce a threshold gradient descent (TGD) regularization procedure for estimating the sparse precision matrix in the setting of Gaussian graphical models and demonstrate its application to identifying genetic networks. Such a procedure is computationally feasible and can easily incorporate prior biological knowledge about the network structure. Simulation results indicate that the proposed method yields a better estimate of the precision matrix than the procedures that fail to account for the sparsity of the graphs. We also present the results on inference of a gene network for isoprenoid biosynthesis in Arabidopsis thaliana. These results demonstrate that the proposed procedure can indeed identify biologically meaningful genetic networks based on microarray gene expression data.  相似文献   

17.
A graphical tool to visualize highly complicated biomolecular network graphs is described. It helps us to understand the graphs from macroscopic and microscopic viewpoints by incorporating continuous transition from global to clipped hyperbolic projection. GSCope also helps us to find a molecule in the graphs by offering several searching functions. It is useful to publish biomolecular network graphs on the internet. AVAILABILITY: GSCope is available at http://gscope.gsc.riken.go.jp.  相似文献   

18.
KnowledgeEditor is a graphical workbench for biological experts to model biomolecular network graphs. The modeled network data are represented by SRML, and can be published via the internet with the help of plug-in module 'GSCope'. KnowledgeEditor helps us to model and analyze biological pathways based on microarray data. It is possible to analyze the drawn networks by simulating up-down regulatory cascade in molecular interactions. AVAILABILITY: KnowledgeEditor is available at http://gscope.gsc.riken.go.jp/.  相似文献   

19.
MOTIVATION: An important problem in systems biology is the inference of biochemical pathways and regulatory networks from postgenomic data. Various reverse engineering methods have been proposed in the literature, and it is important to understand their relative merits and shortcomings. In the present paper, we compare the accuracy of reconstructing gene regulatory networks with three different modelling and inference paradigms: (1) Relevance networks (RNs): pairwise association scores independent of the remaining network; (2) graphical Gaussian models (GGMs): undirected graphical models with constraint-based inference, and (3) Bayesian networks (BNs): directed graphical models with score-based inference. The evaluation is carried out on the Raf pathway, a cellular signalling network describing the interaction of 11 phosphorylated proteins and phospholipids in human immune system cells. We use both laboratory data from cytometry experiments as well as data simulated from the gold-standard network. We also compare passive observations with active interventions. RESULTS: On Gaussian observational data, BNs and GGMs were found to outperform RNs. The difference in performance was not significant for the non-linear simulated data and the cytoflow data, though. Also, we did not observe a significant difference between BNs and GGMs on observational data in general. However, for interventional data, BNs outperform GGMs and RNs, especially when taking the edge directions rather than just the skeletons of the graphs into account. This suggests that the higher computational costs of inference with BNs over GGMs and RNs are not justified when using only passive observations, but that active interventions in the form of gene knockouts and over-expressions are required to exploit the full potential of BNs. AVAILABILITY: Data, software and supplementary material are available from http://www.bioss.sari.ac.uk/staff/adriano/research.html  相似文献   

20.
Li W  Kurata H 《PloS one》2008,3(7):e2541
For complex biological networks, graphical representations are highly desired for understanding some design principles, but few drawing methods are available that capture topological features of a large and highly heterogeneous network, such as a protein interaction network. Here we propose the circular perspective drawing (CPD) method to visualize global structures of large complex networks. The presented CPD combines the quasi-continuous search (QCS) analogous to the steepest descent method with a random node swapping strategy for an enhanced calculation speed. The CPD depicts a network in an aesthetic manner by showing connection patterns between different parts of the network instead of detailed links between nodes. Global structural features of networks exhibited by CPD provide clues toward a comprehensive understanding of the network organizations. Availability: Software is freely available at http://www.cadlive.jp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号