首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitrification has been used to successfully cryopreserve cells and tissues for over 60 years. Glass transition temperature (T g) of the vitrification is a critical parameter, which has been investigated experimentally. In this study, an isothermal–isobaric molecular simulation (NPT-MD) is proposed to investigate the glass transition and T g of such vitrification solution. The cohesive energy density, solubility parameter (δ) and bulk modulus of the solution during the process of the glass transition are investigated as well. The results indicate that these properties as functions of temperature can give a definite inflexion; thus, these properties can be used to predict T g more accurately than the heat capacity (C p ), density (ρ), volume (V) and radial distribution function (rdf). At the same time, the predicted values of T g agree well with the experimental results. Therefore, molecular dynamics simulation is a potential method for investigating the glass transition and T g of the vitrification solutions.  相似文献   

2.
Molecular dynamics simulations using AMB06C, an in-house carbohydrate force field, (NPT ensembles, 1 atm) were carried out on a periodic cell that contained a cyclic 240 glucose residue amylose fragment (c-DP-240) and TIP3P water molecules. Molecular conformation and movement of the amylose fragment and water molecules at different temperatures were examined. The periodic cell volume, density, and potential energy were determined at temperatures above and below the glass transition temperature (Tg) in 25 K increments. The amorphous cell is constructed through successive dynamic equilibration steps at temperatures above the assumed Tg value and the temperature successively lowered until several temperature points were obtained below Tg. Molecular dynamics simulations were continued for at least 500 ps or until the volume drift stopped and remained constant for several hundred picoseconds. The Tg values were found by noting the discontinuity in slope of the volume (V), potential energy (PE), or density (ρ) versus 1/T. The changes in flexibility and motion of the amylose chain as well as differences in self diffusion coefficients of water molecules are described. The final average Tg value found (316 K) is in agreement with experimental values, i.e. 320 K.  相似文献   

3.
Li DX  Liu BL  Liu YS  Chen CL 《Cryobiology》2008,56(2):114-119
Vitrification is proposed to be the best way for the cryopreservation of organs. The glass transition temperature (Tg) of vitrification solutions is a critical parameter of fundamental importance for cryopreservation by vitrification. The instruments that can detect the thermodynamic, mechanical and dielectric changes of a substance may be used to determine the glass transition temperature. Tg is usually measured by using differential scanning calorimetry (DSC). In this study, the Tg of the glycerol-aqueous solution (60%, wt/%) was determined by isothermal-isobaric molecular dynamic simulation (NPT-MD). The software package Discover in Material Studio with the Polymer Consortium Force Field (PCFF) was used for the simulation. The state parameters of heat capacity at constant pressure (Cp), density (ρ), amorphous cell volume (Vcell) and specific volume (Vspecific) and radial distribution function (rdf) were obtained by NPT-MD in the temperature range of 90–270 K. These parameters showed a discontinuity at a specific temperature in the plot of state parameter versus temperature. The temperature at the discontinuity is taken as the simulated Tg value for glycerol–water binary solution. The Tg values determined by simulation method were compared with the values in the literatures. The simulation values of Tg (160.06–167.51 K) agree well with the DSC results (163.60–167.10 K) and the DMA results (159.00 K). We drew the conclusion that molecular dynamic simulation (MDS) is a potential method for investigating the glass transition temperature (Tg) of glycerol–water binary cryoprotectants and may be used for other vitrification solutions.  相似文献   

4.
A type of shape memory polyurethane with 60 wt% hard segments (SMPU60) was prepared. Its material properties were tested by dynamic mechanical analysis (DMA) and Instron, and simulated using fully atomistic molecular dynamics (MD). The glass transition temperature (T g) of SMPU60 determined by DMA is 316 K, which is slightly lower than that estimated through MD simulations (T g = 328 K) , showing the calculated T g is in good agreement with experimental data. A complex hydrogen bonding network was revealed with the calculation of radial distribution functions (RDFs). The C═O⋯H bond is the predominant hydrogen-bonding interaction. With increasing temperature, both the hydrogen bonding and the moduli decreased, and the dissociation of intermolecular hydrogen bonding induced the decrease of the moduli.  相似文献   

5.
Abstract

Molecular dynamics simulation of some alkali metasilicates (M2SiO3, M = Li, Na, K) was performed to compare glass transition temperatures, Tg , defined in various ways. The potential parameters derived from ab initio MO calculations were used and found to reproduce the inflection of V-T relation on cooling the system. The Tg defined by the inflection point corresponds well to that defined by geometrical changes of coordination polyhedra found in previous work. The self-diffusion coefficients of the alkali ions in higher temperature regions were shown to be related to the amount of free volume in these systems.  相似文献   

6.
The glass transition and its related dynamics of myoglobin in water and in a water–glycerol mixture have been investigated by dielectric spectroscopy and differential scanning calorimetry (DSC). For all samples, the DSC measurements display a glass transition that extends over a large temperature range. Both the temperature of the transition and its broadness decrease rapidly with increasing amount of solvent in the system. The dielectric measurements show several dynamical processes, due to both protein and solvent relaxations, and in the case of pure water as solvent the main protein process (which most likely is due to conformational changes of the protein structure) exhibits a dynamic glass transition (i.e. reaches a relaxation time of 100 s) at about the same temperature as the calorimetric glass transition temperature Tg is found. This glass transition is most likely caused by the dynamic crossover and the associated vanishing of the α-relaxation of the main water relaxation, although it does not contribute to the calorimetric Tg. This is in contrast to myoglobin in water–glycerol, where the main solvent relaxation makes the strongest contribution to the calorimetric glass transition. For all samples it is clear that several proteins processes are involved in the calorimetric glass transition and the broadness of the transition depends on how much these different relaxations are separated in time.  相似文献   

7.
The water content–water activity–glass transition temperature relationships of commercial spray-dried borojó powder, with and without maltodextrin, have been studied as related to changes in color and mechanical properties. The GAB and Gordon and Taylor models were well fitted to the sorption and glass transition data, respectively. The Boltzman equation adequately described the evolution of the mechanical parameter characterized in the samples with the difference between the experimental temperature and the glass transition temperature (T g) of the sample. The color of the samples showed a sigmoid change with water activity. The changes in the mechanical properties of borojó powder related to collapse development started when the sample moved to the rubbery state and began to be significant at about 10 °C above T g. The increase in the molecular mobility from this point on also favors browning reactions. Maltodextrin presence slows the caking kinetics but induces color changes to spray-dried borojó powder.  相似文献   

8.
Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g′). This article is focused on the factors affecting determination of T g′ for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g′. Although various analytical techniques are used for determination of T g′ based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g′ determination. Additionally, challenges associated with T g′ determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g′ for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g′), in general, is outside the scope of this work.  相似文献   

9.
A comparative study was conducted to determine the effects of graphene and carbon nanotubes on the thermo-mechanical properties of asphalt binder using molecular simulations and experiments. Micro-morphology of graphene and carbon nanotubes was measured by scanning electron microscopy. Thermal stability and glass transition temperature were investigated by differential scanning calorimeter. Simulation results indicated that the Tg had slightly changed for graphene-modified asphalt (GMA) and carbon nanotubes-modified asphalt (CNsMA) and that the thermal expansion coefficients and thermal conductivity increased along with the adding amount of graphene or carbon nanotubes. The Tg calculated by density–temperature method was closer than the experimental Tg and the Tg decreased in the order of CNsMA, GMA and asphalt. Young’s modulus of asphalt, GMA and CNsMA were 9.2658, 25.7563 and 17.8249 GPa at 298 K, respectively, which indicated that thermo-mechanical properties of asphalt showed considerable improvements after the addition of graphene or carbon nanotubes, and carbon nanotubes-modified asphalt and GMA were promising candidates for the future modified asphalt.  相似文献   

10.
The effect of water content on the glass transition temperatures of a ready to eat cereal formulation was determined, as well as for its major components, oat flour, rice flour and an oat–rice flour blend, in the same ratio as they are present in the formulation. All samples were compression moulded at high temperature and were moisture conditioned in a 10–22% interval (dry basis). Glass transition temperatures (Tg) were measured by differential scanning calorimetry (DSC) and the main mechanical relaxation temperatures (Tα), measured by dynamic mechanical thermal analysis (DMTA). The relaxation temperatures taken at tan δ peaks, were found 20–30 °C larger than Tg. Besides the plasticizing effect of water adequately described by the Gordon–Taylor equation, no differences of Tg (and Tα) values between the major components were obtained at a constant moisture content. The Tg and Tα values of the RTE formulation were found to be about 30 °C lower than its components, a result which was attributed to the plasticizing effect of the minor components in the formulation (sugar and malt extract).  相似文献   

11.
An amorphous solid of cyclomaltoheptaose (β-cyclodextrin, β-CD) was formed by milling its crystalline form using a high-energy planetary mill at room temperature. The glass transition of this amorphous solid was found to occur above the thermal degradation point of the material preventing its direct observation and thus its full characterization. The corresponding glass transition temperature (Tg) and the ΔCp at Tg have, however, been estimated by extrapolation of Tg and ΔCp of closely related amorphous compounds. These compounds include methylated β-CD with different degrees of substitution and molecular alloys obtained by co-milling β-CD and methylated β-CD (DS 1.8) at different ratios. The physical characterization of the amorphous states have been performed by powder X-ray diffraction and differential scanning calorimetry, while the chemical integrity of β-CD upon milling was checked by NMR spectroscopy and mass spectrometry.  相似文献   

12.
Abstract

The impact of high-pressure processing (HPP) on dissusion of antioxidant butylated hydroxytoluene (BHT) in polyethylene (PE) was discussed via the molecular dynamics method. Furthermore, the glass transition temperatures (Tg), the accessible free volumes of PE and the diffusion coefficients of BHT in PE at different HPP treatments were calculated, and the diffusion trajectories of the BHT molecules in PE were also presented. Finally, the diffusion mechanism of BHT in PE under HPP was analyzed based on the aforementioned simulation results. The results show that the Tg of PE increases under high pressure while the fractional free volume (FFV) reduces, and the diffusion coefficient decreases with the pressure on the rise. The diffusion trajectories of BHT in PE under HPP indicate that the BHT molecules are trapped and slowly wriggle in a narrow path among PE molecular chains due to the extreme high pressure. However, the high temperature has an opposite effect on the diffusion behavior of BHT in PE compared with high pressure. As the temperature rises, the FFV of PE and the diffusion coefficient of BHT in PE are elevated. This study is helpful to the research of high-pressure food safety and packaging migration.  相似文献   

13.
The lyotropic behavior and glass-forming properties of octyl β-d-glucoside (C8Glu) and octyl β-d-thioglucoside (C8SGlu)/water binary mixtures were evaluated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The results clearly indicate that the mixture forms a glass in the supercooling state of liquid crystalline phases such as cubic, lamellar, and smectic. The glass transition temperature (Tg) of the mixture was strongly dependent on solute concentration, with a higher concentration correlating with a higher Tg. The experimental Tg was consistent with the predicted value calculated using the Couchman-Karasz equation in both the C8Glu and C8SGlu/water mixtures. The change of heat capacity at Tg showed the two bending points under variation of concentrations. And the highest temperature of phase transition from lamellar to isotropic solution was observed at around 50% molar concentration. It was expected that non-percolated state of water existed in extremely higher concentration ranges.  相似文献   

14.
Metal oxides, as one of the most promising flame retardant additives, improve the fire retardant and the thermal stability properties of polymers. In the present study, molecular dynamics (MD) simulations based on the united atom model were applied to study the effect of alumina nanoparticles on the density, thermal conductivity, heat capacity, and thermal diffusivity of isotactic poly(methyl methacrylate) (is-PMMA). Thermal diffusivity of PMMA and PMMA/alumina nanocomposite were investigated through calculating thermal conductivity, density and heat capacity in the range of 300–700?K. Heat capacity can be calculated using fluctuations properties of energy. Thermal conductivity was calculated through the nonequilibrium molecular dynamics (NEMD) simulation by Fourier’s law approach. Our results show that the addition of alumina nanoparticles decreases the heat capacity and increases the glass transition temperature (Tg), thermal conductivity and thermal diffusivity of the PMMA. Therefore, the addition of alumina nanoparticles to PMMA improves the fire retardancy of the polymer. In addition, we illustrate the links between the intermolecular and bulk properties of PMMA in the presence of the alumina nanoparticles.  相似文献   

15.
We performed Raman and Brillouin scattering measurements to estimate glass transition temperature, Tg, of hydrated protein. The measurements reveal very broad glass transition in hydrated lysozyme with approximate Tg ∼ 180 ± 15 K. This result agrees with a broad range of Tg ∼ 160–200 K reported in literature for hydrated globular proteins and stresses the difference between behavior of hydrated biomolecules and simple glass-forming systems. Moreover, the main structural relaxation of the hydrated protein system that freezes at Tg ∼ 180 K remains unknown. We emphasize the difference between the “dynamic transition”, known as a sharp rise in mean-squared atomic displacement <r2> at temperatures around TD ∼ 200–230 K, and the glass transition. They have different physical origin and should not be confused.  相似文献   

16.
doi:10.1111/j.1741‐2358.2009.00312.x
Glass transition temperature of hard chairside reline materials after post‐polymerisation treatments Objective: This study evaluated the effect of post‐polymerisation treatments on the glass transition temperature (Tg) of five hard chairside reline materials (Duraliner II‐D, Kooliner‐K, New Truliner‐N, Ufi Gel hard‐U and Tokuso Rebase Fast‐T). Materials and methods: Specimens (10 × 10 × 1 mm) were made following the manufacturers’ instructions and divided into three groups (n = 5). Control group specimens were left untreated. Specimens from the microwave group were irradiated with pre‐determined power/time combinations, and specimens from the water‐bath group were immersed in hot water at 55°C for 10 min. Glass transition (°C) was performed by differential scanning calorimetry. Data were analysed using anova, followed by post hoc Tukey’s test (α = 0.05). Results: Both post‐polymerisation treatments promoted a significant (p < 0.05) increase in the Tg of reline material K. Materials K, D and N showed the lowest Tg (p < 0.05). No significant difference between T and U specimens was observed. Conclusion: Post‐polymerisation treatments improved the glass transition of material Kooliner, with the effect being more pronounced for microwave irradiation.  相似文献   

17.
The granule morphology, microstructure, and thermal properties of micronized cassava starch prepared by a vacuum ball-grinding machine were investigated. Scanning electron microscopy (SEM) analysis indicated that the morphology of starch granule changes during the ball-grinding treatment. Differential scanning calorimetry (DSC) analysis indicated that the maximum peak temperature (Tp) of the gelatinization process, the glass transition (Tg), and peak height index (PHI) for the starch granules decreased when the size of micronized starch granules was reduced. When the size of starch granules was reduced beyond 9.11 μm, they have a tendency to agglomerate and their ΔH were increased. The granule size has a significant effect on the gelatinization properties of cassava starch. This study will provide useful information of the micronized starch for its potential industrial application.  相似文献   

18.
《Annals of botany》1997,79(3):291-297
The relationship between the glassy state in seeds and storage stability was examined, using the glass transition curve and a seed viability database from previous experiments. Storage data for seeds at various water contents were studied by Williams–Landel–Ferry (WLF) kinetics, whereas the glass transition curves of seeds with different storage stability were analysed by the Gordon–Taylor equation in terms of the plasticization effect of water on seed storage stability. It was found that the critical temperatures (Tc) for long-term storage of three orthodox seeds were near or below their glass transition temperatures (Tg), indicating the requirement for the presence of the glassy state for long-term seed storage. The rate of seed viability loss was a function of T-Tgat T>Tg, which fitted the WLF equation well, suggesting that storage stability was associated with the glass transition, and that the effect of water content on seed storage was correlated with the plasticization effect of water on intracellular glasses. A preliminary examination suggested a possible link between the glass transition curve and seed storage stability. According to the determined WLF constants, intracellular glasses in seeds fell into the second class of amorphous systems as defined by Slade and Levine (Critical Reviews in Food Science and Nutrition30: 115–360, 1991). These results support the interpretation that the glassy state plays an important role in storage stability and should be a major consideration in optimizing storage conditions.  相似文献   

19.
N. Metatla 《Molecular simulation》2013,39(14):1187-1193
The aim of molecular modeling is to mimic reality by considering approximations appropriate to the scale at which the simulation is carried out. At the atomic level, forcefields that represent average atomic interactions are used. However, the phase space has to be adequately explored in order to compare successfully computed and experimental properties. The procedure exposed in this article considers an initial selection of relevant configurations on which a simulated annealing process is applied using the first generation forcefield OPLS, followed by a uniform hydrostatic compression using the second generation forcefield COMPASS©. The resulting data are fitted by an equation of state, from which density and bulk modulus are determined. The glass transition is then simulated and T gs are computed. Our approach is tested using a series of vinylic polymers, which differ from each other by small variations in atomic interaction combinations. The excellent agreement with experimental data shows the validity of the procedure exposed. Moreover, a clear linear relationship between simulated and experimental T gs is revealed.  相似文献   

20.
The objectives of this study were to investigate the moisture-induced protein aggregation of whey protein powders and to elucidate the relationship of protein stability with respect to water content and glass transition. Three whey protein powder types were studied: whey protein isolate (WPI), whey protein hydrolysates (WPH), and beta-lactoglobulin (BLG). The water sorption isotherms were determined at 23 and 45°C, and they fit the Guggenheim–Andersson–DeBoer (GAB) model well. Glass transition was determined by differential scanning calorimeter (DSC). The heat capacity changes of WPI and BLG during glass transition were small (0.1 to 0.2 Jg−1 °C−1), and the glass transition temperature (T g) could not be detected for all samples. An increase in water content in the range of 7 to 16% caused a decrease in T g from 119 down to 75°C for WPI, and a decrease from 93 to 47°C for WPH. Protein aggregation after 2 weeks’ storage was measured by the increase in insoluble aggregates and change in soluble protein fractions. For WPI and BLG, no protein aggregation was observed over the range of 0 to 85% RH, whereas for WPH, ∼50% of proteins became insoluble after storage at 23°C and 85% RH or at 45°C and ≥73% RH, caused mainly by the formation of intermolecular disulfide bonds. This suggests that, at increased water content, a decrease in the T g of whey protein powders results in a dramatic increase in the mobility of protein molecules, leading to protein aggregation in short-term storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号