首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
2.
Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO’s against potential triplex target sites.  相似文献   

3.
《Inorganica chimica acta》1986,119(2):131-139
In an effort to quantitatively estimate steric contributions to the aquation rates of a series of structurally related cobalt(III) tetraamine complexes, strain energy minimization calculations have been performed on the reactant and some plausible transition state structures. Free energies of activation ΔG*obs, are factored as: ΔG*obs, = ΔG*bb + ΔG*strain + ΔG*CF + ΔG*solvation + … where ΔG*bb is the free energy change associated with bond breaking, ΔG*solvation is the solvation free energy difference between the reactant and a proposed transition stare, ΔG*CF is the difference in crystal field stabilization between the reactant and a proposed transition state, and ΔG*strain is the strain energy difference between the reactant complex and a proposed transition state. The activation energy for the aquation of a hypothetical ‘strain free’ complex is defined as ΔG*int and reflects the energy required for the bond breaking step with all other terms. For the cations trans-(RR,SS)-dichloro-1,8- diamino-3,6-diazaoctanecobalt(III)(trans [Co(2,2,2- tet)Cl2]+), trans-(RR,SS)- or trans-(RS)-dichloro-1.9- diamino-3,7-diazanonanecobalt(III)(trans [Co(2,3,2- tet)Cl2]+ and trans-(RS)-dichloro-1,10-diamino-4,7- diazadecanecobalt(III)(trans[Co(3,2,3-tet)Cl2]+) ΔG*int is found to be a constant 123 kJ/mol. For the trans-dichlorocobalt(III) complexes with the ligands 1,4,7,10-tetraazacyclotridecane([13]-ane-N4), 1,4,8, 11-tetraazacyclotetradecane([14]-ane-N4), 1,4,8,12- tetraazacyclopentadecane([15]-ane-N4) and 1,5,9,13- tetraazacyclohexadecane([16]-ane-N4), ΔG*int lies in the range 133–139 kJ/mol.  相似文献   

4.
Vecenie CJ  Morrow CV  Zyra A  Serra MJ 《Biochemistry》2006,45(5):1400-1407
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the types GCGXUAAUYCGC and GGUXUAAUYACC with Watson-Crick loop closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.1 to 5.1 kcal/mol. These results agree with the model previously developed [Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813] to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on the 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Thermodynamic parameters are also reported for hairpin formation in 1 M NaCl by RNA sequence of the types GACGXUAAUYUGUC and GGUXUAAUYGCC with GU base pair closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.6 to 5.3 kcal/mol. These results allow the development of a model for predicting the stability of hairpin loops closed by GU base pairs. DeltaG degrees (37L(n) (kcal/mol) = DeltaG degrees (37i(n) - 0.8 (if the first mismatch is GA) - 0.8 (if the first mismatch is GG and the loop is closed on the 5' side by a purine). Note that for these hairpins, the stability of the loops does not depend on DeltaG degrees (37MM). For hairpin loops closed by GU base pairs, the DeltaG degrees (37i(n) values, when n = 4, 5, 6, 7, and 8, are 4.9, 5.0, 4.6, 5.0, and 4.8 kcal/mol, respectively. The model gives good agreement when tested against six naturally occurring hairpin sequences. Thermodynamic values for terminal mismatches adjacent to GC, GU, and UG base pairs are also reported.  相似文献   

5.
Absorbance-temperature profiles have been determined for the following self-complementary oligonucleotides or equimolar paris of complementary oligonucleotides containing GC base pairs: A2GCU2, A3GCU3, A4GCU4, A6CG + CGU6, A8CG + CGU8, A4G2 + C2U4, A5G2 + C2U5, A4G3 + C3U4, and A5G3 + C3U5. In all cases cooperative melting transitions indicate double-helix formation. As was found previously, the stability of GC containing oligomer helices is much higher than that of AU helices of corresponding length. Moreover, helices with the same length and base composition but different sequences also have quite different stabilites. The melting curves were andlyzed using a zipper model and the thermodynamic parameters for the AU pairs determined previously. The effect of single-strand stacking was considered separately. According to this model, the formation of a GC pair from unstacked single strands is associated with an ethalpy change of ?15 kcal/mole. Due to the high degree of single-strand stacking at room temperature the enthalpy change for the formation of GC pairs from unstacked single strands is only ?5 to ?6 kcal/mole. (The corresponding parameters for AU pairs are ?10.7 kcal/mole and ?5 to ?6 kcal/mole.) The sequence dependence of helix stability seems to be primarily entropic since no differences in ΔH were seen among the sequence isomers. The kinetics of helix formation was investigated for the same molecules using the temperature jump technique. Recombination of strands is second order with rate constants in the range of 105 to 107M?1 sec?1 depending on the chain length and the nucleotide sequence. Within a series of oligomers of a given type, the rates of recombination decrease with increasing chain length. Oligomers with the sequence AnGCUn recombine six to eight times slower than the other oligomers of corresponding chain length. The experimental enthalpies of activation of 6 to 9 kcal/mole suggest a nucleation length of one or two GC base pairs. The helix dissociation process has rate constants between 0.5 and 500 sec?1 and enthalpies of activation of 25 to 50 kcal/mole. An increase of chain length within a given nucleotide series leads to decreased rates of dissociation and increased enthalpies of activation. An investigation of the effect of ionic strength on AnGCUn helix formation showed that the rates of recombination increase considerably with increased ionic strength.  相似文献   

6.
The theoretical studies on DNA with the anticancer drug 6-Mercaptopurine (6-MP) are investigated using theoretical methods to shed light on drug designing. Among the DNA base pairs considered, 6-MP is stacked with GC with the highest interaction energy of –46.19 kcal/mol. Structural parameters revealed that structure of the DNA base pairs is deviated from the planarity of the equilibrium position due to the formation of hydrogen bonds and stacking interactions with 6-MP. These deviations are verified through the systematic comparison between X–H bond contraction and elongation and the associated blue shift and red shift values by both NBO analysis and vibrational analysis. Bent’s rule is verified for the C–H bond contraction in the 6-MP interacted base pairs. The AIM results disclose that the higher values of electron density (ρ) and Laplacian of electron density (?2ρ) indicate the increased overlap between the orbitals that represent the strong interaction and positive values of the total electron density show the closed-shell interaction. The relative sensitivity of the chemical shift values for the DNA base pairs with 6-MP is investigated to confirm the hydrogen bond strength. Molecular dynamics simulation studies of G-quadruplex DNA d(TGGGGT)4 with 6-MP revealed that the incorporation of 6-MP appears to cause local distortions and destabilize the G-quadruplex DNA.  相似文献   

7.
The molecular structure (hydrogen bonding, bond distances and angles), dipole moment and vibrational spectroscopic data [vibrational frequencies, IR and vibrational circular dichroism (VCD)] of cyclobutanone?HX (X?=?F, Cl) complexes were calculated using density functional theory (DFT) and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6–311G, 6–311G**, 6–311 + + G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2 and B3LYP levels with basis sets including diffuse functions. Surface potential energy calculations were carried out with scanning HCl and HF near the oxygen atom. The nonlinear hydrogen bonds of 1.81 Å and 175° for HCl and 1.71 Å and 161° for HF were calculated. In these complexes the C=O and H–X bonds participating in the hydrogen bond are elongated, while others bonds are compressed. The calculated vibrational spectra were interpreted and the band assignments reported are in excellent agreement with experimental IR spectra. The C=O stretching vibrational frequencies of the complexes show red shifts with respect to cyclobutanone.  相似文献   

8.
Abstract

Neutral (G.GC, A. AT, G.AT, T. AT, and C (imino).GC) and protonated (CH+.GC and AH+.GC) hydrogen-bonded trimers of nucleic acid bases were characterized by ab initio methods with the inclusion of electron correlation. In addition, the influence of metal cations on the third-strand binding in Purine-Purine-Pyrimidine (Pu.PuPy) reverse-Hoogsteen triplets has been studied. The ab initio calculations were compared with those from recently introduced force fields (AMBER4.1, CHARMM23, and CFF95). The three-body term in neutral trimers is mostly negligible, and the use of empirical potentials is justified. The only exception is the neutral G.GC Hoogsteen trimer with a three-body term of -4 kcal/mol. Protonated trimers are stabilized by molecular ion—;molecular dipole attraction and the interaction within the complex is nonadditive, with the three-body term on the order of -3 kcal/mol. There is a significant induction interaction between the third-strand protonated base and guanine. The calculations indicate an enhancement of the third-strand binding in the G.GC reverse-Hoogsteen trimer due to metal cation coordination to the N7/06 position of the third-strand guanine. Interactions between metal cations and complexes of DNA bases are in general highly nonadditive; the three-body term is above -10 kcal/mol in a complex of a divalent cation (Ca2+) with the GG reverse-Hoogsteen pair. The pairwise additive empirical potentials qualitatively underestimate the binding energy between cation and base.  相似文献   

9.
High level ab initio and density functional calculations, extrapolated to QCISD(T)/6-311+G(3df,2p)//MP2/6-31+G**+ZPE, reveal that cyclic ion pairs can form in the hydrogen bonded complexes of haloboric acids BHnX3-n–HX, X=F, Cl, with Lewis bases HX, H2O, CH3OH, and NH3, even in isolation (e.g., in the gas phase). The intrinsic acidities (deprotonation energies) required for protonation of these bases with formation of gas phase ion pairs are calculated to be <295 kcal/mol for water, <301 kcal/mol for methanol, and <306 kcal/mol for ammonia; such values are common for acidic sites in zeolites. All gas phase ion pairs prefer symmetric bidentate or tridentate structures. In the other cases where hydrogen bonded complexes prevail, symmetric ion pair-like transition structures for multiple hydrogen exchange are computed.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089400060563  相似文献   

10.
Abstract

The trans Watson-Crick/Watson-Crick family of base pairs represent a geometric class that play important structural and possible functional roles in the ribosome, tRNA, and other functional RNA molecules. They nucleate base triplets and quartets, participate as loop closing terminal base pairs in hair pin motifs and are also responsible for several tertiary interactions that enable sequentially distant regions to interact with each other in RNA molecules. Eleven representative examples spanning nine systems belonging to this geometric family of RNA base pairs, having widely different occurrence statistics in the PDB database, were studied at the HF/6–31G (d, p) level using Morokuma decomposition, Atoms in Molecules as well as Natural Bond Orbital methods in the optimized gas phase geometries and in their crystal structure geometries, respectively. The BSSE and deformation energy corrected interaction energy values for the optimized geometries are compared with the corresponding values in the crystal geometries of the base pairs. For non protonated base pairs in their optimized geometry, these values ranged from ?8.19 kcal/mol to ?21.84 kcal/mol and compared favorably with those of canonical base pairs. The interaction energies of these base pairs, in their respective crystal geometries, were, however, lesser to varying extents and in one case, that of A:A W:W trans, it was actually found to be positive. The variation in RMSD between the two geometries was also large and ranged from 0.32–2.19 Å. Our analysis shows that the hydrogen bonding characteristics and interaction energies obtained, correlated with the nature and type of hydrogen bonds between base pairs; but the occurrence frequencies, interaction energies, and geometric variabilities were conspicuous by the absence of any apparent correlation. Instead, the nature of local interaction energy hyperspace of different base pairs as inferred from the degree of their respective geometric variability could be correlated with the identities of free and bound hydrogen bond donor/acceptor groups present in interacting bases in conjunction with their tertiary and neighboring group interaction potentials in the global context. It also suggests that the concept of isostericity alone may not always determine covariation potentials for base pairs, particularly for those which may be important for RNA dynamics. These considerations are more important than the absolute values of the interaction energies in their respective optimized geometries in rationalizing their occurrences in functional RNAs. They highlight the importance of revising some of the existing DNA based structure analysis approaches and may have significant implications for RNA structure and dynamics, especially in the context of structure prediction algorithms.  相似文献   

11.
Proton nuclear magnetic resonance (NMR) spectroscopy is employed to characterize the kinetics of base-pair opening in a series of 9mer duplexes containing different single base mismatches. The imino protons from the different mismatched, as well as fully matched, duplexes are assigned from the imino-imino region in the WATERGATE NOESY spectra. The exchange kinetics of the imino protons are measured from selective longitudinal relaxation times. In the limit of infinite exchange catalyst concentration, the exchange times of the mismatch imino protons extrapolate to much shorter lifetimes than are commonly observed for an isolated GC base pair. Different mismatches exhibit different orders of base-pair lifetimes, e.g. a TT mismatch has a shorter base-pair lifetime than a GG mismatch. The effect of the mismatch was observed up to a distance of two neighboring base pairs. This indicates that disruption in the duplex caused by the mismatch is quite localized. The overall order of base-pair lifetimes in the selected sequence context of the base pair is GC > GG > AA > CC > AT > TT. Interestingly, the fully matched AT base pair has a shorter base-pair lifetime relative to many of the mismatches. Thus, in any given base pair, the exchange lifetime can exhibit a strong dependence on sequence context. These findings may be relevant to the way mismatch recognition is accomplished by proteins and small molecules.  相似文献   

12.
Thermodynamic parameters of helix formation were measured spectroscopically for seven hexaribonucleotides containing a GC tetramer core and G.U or other terminal mismatches. The free energies of helix formation are compared with those for the tetramer core alone and with those for the hexamer with six Watson-Crick base pairs. In 1 M NaCl, at 37 degrees C, the free energy of a terminal G.U mismatch is about equal to that of the corresponding A.U pair. Although other terminal mismatches studied add between -1.0 and -1.6 kcal/mol to delta G0 37 for helix formation, all are less stable than the corresponding Watson-Crick pairs. Comparisons of the stability increments for terminal G.U mismatches and G.C pairs suggest when stacking is weak the additional hydrogen bond in the G.C pair adds roughly -1 kcal/mol to the favorable free energy of duplex formation.  相似文献   

13.
R M Wartell 《Biopolymers》1972,11(4):745-759
Helix–coil transition curves are calculated for poly (dA) poly(dT) and poly (dA-dT) poly (dA-dT) using the integral equation approach of Goel and Montroll.5 The transitions are described by the loop entropy model with the exponent of the loop entropy factor, k, remaining an arbitrary constant. The theoretical calculations are compared with experimental transition curves of the two polymers. Results indicate that the stacking energies for these two polymers differ by about 1 kcal/mole of base pairs. Also, a fit between theory and experiment was not possible for k > 1.70.  相似文献   

14.
We have shown for the first time, connecting QM methods with QTAIM analysis and using the methodology of the sweeps of the energetical, electron-topological and geometrical parameters, that the tautomerisation of the wobble guanine·thymine (wG·T) DNA base mispair into the wG*·T* base mispair induced by the double proton transfer (DPT), which undergoes a concerted asynchronous pathway, is not mutagenic. The wG·T?→?wG*·T* DPT tautomerisation does not result in the transition of the G base into its mutagenic tautomeric form G* able to mispair with the T base within the Watson–Crick base pairing scheme. This observation is explained by the so-called quantum protection of the wG·T DNA base mispair from its mutagenic tautomerisation – the dynamical non-stability of the tautomerised wG*·T* base mispair and significantly negative value of the Gibbs free energy of activation for the reverse reaction of the wG·T?→?wG*·T* DPT tautomerisation.  相似文献   

15.
Riboswitches are functional mRNA that control gene expression. Thiamine pyrophosphate (TPP) binds to thi-box riboswitch RNA and allosterically inhibits genes that code for proteins involved in the biosynthesis and transport of thiamine. Thiamine binding to the pyrimidine sensor helix and pyrophosphate binding to the pyrophosphate sensor helix cause changes in RNA conformation that regulate gene expression. Here we examine the thermodynamic properties of the internal loop of the pyrophosphate binding domain by comparing the wild-type construct (RNA WT) with six modified 2 × 2 bulged RNA and one 2 × 2 bulged DNA. The wild-type construct retains five conserved bases of the pyrophosphate sensor domain, two of which are in the 2 × 2 bulge (C65 and G66). The RNA WT construct was among the most stable (ΔG°37 = −7.7 kcal/mol) in 1 M KCl at pH 7.5. Breaking the A•G mismatch of the bulge decreases the stability of the construct ∼0.5–1 kcal/mol, but does not affect magnesium binding to the RNA WT. Guanine at position 48 is important for RNA–Mg2+ interactions of the TPP-binding riboswitch at pH 7.5. In the presence of 9.5 mM magnesium at pH 5.5, the bulged RNA constructs gained an average of 1.1 kcal/mol relative to 1 M salt. Formation of a single A+•C mismatch base pair contributes about 0.5 kcal/mol at pH 5.5, whereas two tandem A+•C mismatch base pairs together contribute about 2 kcal/mol.  相似文献   

16.
17.
Abstract

Three-dimensional structures of a representative set of more than 30 hydrogen-bonded nucleic acids base pairs have been studied by reliable ab initio quantum mechanical methods. We show that many hydrogen-bonded nucleic acid base pairs are intrinsically nonplanar, mainly due to the partial sp3 hybridization of nitrogen atoms of their amino groups and secondary electrostatic interactions. This finding extends the variability of intermolecular interactions of DNA bases in that i) flexibility of the base pairs is larger than has been assumed before, and ii) attractive proton-proton acceptor interactions oriented out of the base pair plane are allowed. For example, all four G…A mismatch base pairs are propeller twisted, and the energy preferences for the nonplanar structures range from less than 0.1 kcal/mol to 1.8 kcal/mol. We predict that nonplanarity of the amino group of guanine in the G(anti)…A(anti) pair of the ApG step of the d(CCAAGATTGG)2 crystal structure is an important stabilizing factor that improves the energy of this structure by almost 3 kcal/mol. Currently used empirical potentials are not accurate enough to properly cover the interactions associated with amino-group and base-pair nonplanarity.  相似文献   

18.
Molecular mechanical energy refinement of double-helical pentanucleotide tetra-phosphates, d(CGCGC):d(GCGCG), dG5·dC5, d(TATAT):d(ATATA), and dA5 ·dT5 geometries, are presented in order to examine the energy required to open the Nl(purine) …? N3(pyrimidine) distance (base-pair opening) of a Watson-Crick base pair from its normal value of 3 Å to a value of 6 Å. The structural consequences of forcing base-pair opening is sequence dependent. For both dA5 ·dT5 and d(TATAT):d(ATATA), forcing the Nl (AdeKN3 (Thy) distance of the central base pair to a value of 6 Å slides the bases perpendicular to the helix axis forming a low-energy non-Watson-Crick base pair having an adenine amine hydrogen …? thymine carbonyl oxygen hydrogen bond. The two GC sequences behave differently from both AT sequences and differently from each other. Forcing the Nl(Gua) …? N3(Cyt) distance to 6 Å leads to unconventional structures in which hydrogen bonds are formed between the separated bases and the bases above or below them. These structures appear to be trapped in true local minima 6–10 kcal/mol higher in energy than the Watson-Crick structures. Preliminary simulations on d(CGCGC):d(GCGCG) in the Z geometry suggest the reason the Z form may be more refractory to proton exchange than the B form, consistent with experimental observations.  相似文献   

19.
20.
Watson-Crick optimized geometries and the energies of base pairing for the natural pairs of nucleic bases: adenine-thymine (AT) and guanine-cytosine (GC) have been recalculated by ab initio methods in order to compare results to those found for the non-natural azaadenine-thymine (AAT) and azaguanine-cytosine (AGC) pairs. Geometry optimizations carried out at the HF/6-31G** level and energies obtained at MP2/6-31G**, show that AAT and AGC have hydrogen bonding patterns similar to the natural AT and GC and that the interaction energies (DeltaH0int) for the former are ca. 7 kcal/mol more stable than the latter. Accordingly, the pairs based on azapurines would be favored with respect to the natural pairs. Some possible explanations why nature does not use extensively the azabases in base pairing are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号