首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that the PEGylated LPD (liposome-polycation-DNA) nanoparticles were highly efficient in delivering siRNA to the tumor with low liver uptake. Its mechanism of evading the reticuloendothelial system (RES) is reported here. In LPD, nucleic acids were condensed with protamine into a compact core, which was then coated by two cationic lipid bilayers with the inner bilayer stabilized by charge-charge interaction (also called the supported bilayer). Finally, a detergent-like molecule, polyethylene glycol (PEG)-phospholipid is post-inserted into the lipid bilayer to modify the surface of LPD. The dynamic light scattering (DLS) data showed that LPD had improved stability compared to cationic liposomes after incubation with a high concentration of DSPE-PEG2000, which is known to disrupt the bilayer. LPD prepared with a multivalent cationic lipid, DSGLA, had enhanced stability compared to those containing DOTAP, a monovalent cationic lipid, suggesting that stronger charge-charge interaction in the supported bilayer contributed to a higher stability. Distinct nanoparticle structure was found in the PEGylated LPD by transmission electron microscopy, while the cationic liposomes were transformed into tubular micelles. Size exclusion chromatography data showed that approximately 60% of the total cationic lipids, which were located in the outer bilayer of LPD, were stripped off during the PEGylation; and about 20% of the input DSPE-PEG2000 was incorporated into the inner bilayer with about 10.6 mol% of DSPE-PEG2000 presented on the particle surface. This led to complete charge shielding, low liver sinusoidal uptake, and 32.5% injected dose delivered to the NCI-H460 tumor in a xenograft model.  相似文献   

2.
Lateral diffusion coefficients of PEG-ylated lipids with three different molecular weight PEG groups (1000, 2000 and 5000) were measured in magnetically-aligned bicelles using the stimulated echo (STE) pulsed field gradient (PEG) 1H nuclear magnetic resonance (NMR) method. At concentrations below the PEG “mushroom-to-brush” transition, all three PEG-ylated lipids exhibited unrestricted lateral diffusion, with lateral diffusion coefficients comparable to those of corresponding non-PEG-ylated lipids and independent of PEG molecular weight. At concentrations above this transition, lateral diffusion slowed progressively with increasing concentration of PEG-ylated lipid as a result of surface crowding. As well, the lateral diffusion coefficients exhibited a pronounced decrease with increasing PEG group molecular weight and a diffusion-time dependence indicative of obstructed diffusion. We conclude that, while lateral diffusion of PEG-ylated lipids within lipid bilayers is determined primarily by the hydrophobic anchoring group, when crowding at the lipid bilayer surface becomes significant, the size of the extra-membranous domain, in this case the PEG group, can influence lateral diffusion, leading to decreased diffusivity with increasing size and producing obstructed diffusion at high crowding. These findings imply that similar considerations will pertain to lateral diffusion of membrane proteins with large extra-membranous domains.  相似文献   

3.
Experimental measurements of the affinity of binding of fluorescent acylated polyethyleneglycol (PEG) conjugates to bilayers containing varying levels of phosphatidylethanolamine-PEGs (PE-PEGs) have been combined with Monte Carlo simulations to investigate the properties of the polymer chains at a PEG-grafted lipid interface. The affinity of binding of such conjugates to large unilamellar phosphatidylcholine/phosphatidylethanolamine (9:1) vesicles decreases 27-fold as the size of the coupled PEG chain increases from 1 to 114 monomer units. Incorporation of increasing amounts of PE-PEG2000 or PE-PEG5000 into the vesicles progressively reduces the affinity of binding of acylpeptide-PEG2000 or -PEG5000 conjugates. Monte Carlo simulations of surfaces with grafted PEG chains revealed no significant dependence of several characteristic properties of the polymer chains, including the average internal energy per polymer and the radii of gyration, on the grafting density in the range examined experimentally. The average conformation of a surface-grafted PEG2000 or PEG5000 chain was calculated to be fairly extended even at low grafting densities, and the projected cross-sectional areas of the grafted PEG chains are considerably smaller than those predicted on the basis of the estimated Flory radius. The experimental variation of the binding affinity of acylated conjugates for bilayers containing varying mole fractions of PE-PEG2000 or -PEG5000 is well explained by expressions treating the surface-grafted PEG polymers either as a van der Waals gas or as a system of rigid discs described by scaled particle theory. From the combined results of our experimental and simulation studies we conclude that the grafted PEG chains exist in a "mushroom" regime throughout the range of polymer densities examined experimentally and that the diminished affinity of binding of acylated-PEG conjugates to bilayers containing PE-PEGs results from occlusion of the surface area accessible for conjugate binding by the mobile PE-PEG polymer chains.  相似文献   

4.
Lateral diffusion coefficients of PEG-ylated lipids with three different molecular weight PEG groups (1000, 2000 and 5000) were measured in magnetically-aligned bicelles using the stimulated echo (STE) pulsed field gradient (PEG) (1)H nuclear magnetic resonance (NMR) method. At concentrations below the PEG "mushroom-to-brush" transition, all three PEG-ylated lipids exhibited unrestricted lateral diffusion, with lateral diffusion coefficients comparable to those of corresponding non-PEG-ylated lipids and independent of PEG molecular weight. At concentrations above this transition, lateral diffusion slowed progressively with increasing concentration of PEG-ylated lipid as a result of surface crowding. As well, the lateral diffusion coefficients exhibited a pronounced decrease with increasing PEG group molecular weight and a diffusion-time dependence indicative of obstructed diffusion. We conclude that, while lateral diffusion of PEG-ylated lipids within lipid bilayers is determined primarily by the hydrophobic anchoring group, when crowding at the lipid bilayer surface becomes significant, the size of the extra-membranous domain, in this case the PEG group, can influence lateral diffusion, leading to decreased diffusivity with increasing size and producing obstructed diffusion at high crowding. These findings imply that similar considerations will pertain to lateral diffusion of membrane proteins with large extra-membranous domains.  相似文献   

5.
A set of 49 protein nanopore-lipid bilayer systems was explored by means of coarse-grained molecular-dynamics simulations to study the interactions between nanopores and the lipid bilayers in which they are embedded. The seven nanopore species investigated represent the two main structural classes of membrane proteins (α-helical and β-barrel), and the seven different bilayer systems range in thickness from ∼28 to ∼43 Å. The study focuses on the local effects of hydrophobic mismatch between the nanopore and the lipid bilayer. The effects of nanopore insertion on lipid bilayer thickness, the dependence between hydrophobic thickness and the observed nanopore tilt angle, and the local distribution of lipid types around a nanopore in mixed-lipid bilayers are all analyzed. Different behavior for nanopores of similar hydrophobic length but different geometry is observed. The local lipid bilayer perturbation caused by the inserted nanopores suggests possible mechanisms for both lipid bilayer-induced protein sorting and protein-induced lipid sorting. A correlation between smaller lipid bilayer thickness (larger hydrophobic mismatch) and larger nanopore tilt angle is observed and, in the case of larger hydrophobic mismatches, the simulated tilt angle distribution seems to broaden. Furthermore, both nanopore size and key residue types (e.g., tryptophan) seem to influence the level of protein tilt, emphasizing the reciprocal nature of nanopore-lipid bilayer interactions.  相似文献   

6.
Liposomes incorporating polyethylene glycol (PEG)-conjugated lipids (PEGylated liposomes) have attracted attention as drug delivery carriers because they show good in vivo stability. The lipid component of PEGylated liposomal formulations needs to be quantified for quality control. In this study, a simple reversed-phase high-performance liquid chromatography (HPLC) method with an evaporative light-scattering detector (ELSD) was established for simultaneous determination of hydrogenated soy phosphatidylcholine, cholesterol, PEG-conjugated lipid, and hydrolysis products of phospholipid in PEGylated liposomal formulations. These lipids were separated using a C18 column with a gradient mobile phase consisting of ammonium acetate buffer and ammonium acetate in methanol at a flow rate of 1.0 ml/min. This method provided sufficient repeatability, linearity, and recovery rate for all lipids. However, the linearity and recovery rates of cholesterol achieved using a ultraviolet (UV) detector were better than those achieved using an ELSD. This validated method can be applied to assess the composition change during the preparation process of liposomes and to quantify lipid components and hydrolysis products contained in a commercially available liposomal formulation DOXIL®. Taken together, this reversed-phase HPLC-UV/ELSD method may be useful for the rapid or routine analysis of liposomal lipid components in process development and quality control.  相似文献   

7.
In contrast to the widely used method of electroporation, the method of soft perforation of lipid bilayers is proposed. It is based on the structural rearrangement of the lipid bilayer formed from disaturated phospholipids at the temperature of the phase transition from the liquid crystalline state to the gel state. This allows us to obtain a lipid pore population without the use of a strong electric field. It is shown that the planar lipid bilayer membrane (pBLM) formed from dipalmitoylphosphatidylcholine in 1 M LiCl aqueous solution exhibits the appearance of up to 50 lipid pores per 1 mm2 of membrane surface, with an average single pore conductivity of 31±13 nS. The estimation of a single pore radius carried out with water-soluble poly(ethylene glycol)s (PEGs) showed that the average pore radius ranged between 1.0–1.7 nm. It was found experimentally that PEG-1450, PEG-2000, and PEG-3350 should be in a position to block the single pore conductivity completely, while PEG-6000 fully restored the ionic conductivity. The similarity of these PEG effects to ionic conductivity in protein pores makes it possible to suggest that the partition of the PEG molecules between the pore and the bulk solution does not depend on the nature of the chemical groups located in the pore wall.  相似文献   

8.
Therapeutic proteins conjugated with branched poly(ethylene glycol) (PEG) have extended in vivo circulation half-lives compared to linear PEG-proteins, thought to be due partly to a greater hydrodynamic volume of branched PEG-proteins, which reduces the glomerular sieving coefficient. In this paper, viscosity radii of PEGylated alpha-lactalbumin (M(r) = 14.2 kDa) and bovine serum albumin (M(r) = 67 kDa) prepared with linear and branched PEGs (with nominal molecular weights 5, 10, 20 and 40 kDa) were compared experimentally using size exclusion chromatography (SEC). PEG adduct:protein molecular weight ratios of the PEGylated proteins covered the range 1:12 to 6:1. Direct comparisons of experimentally measured viscosity radii were found to be misleading due to differences between actual and nominal molecular weights of the PEG reagents used. Comparison with predicted viscosity radii shows that there is no significant difference between the viscosity radii of branched and linear PEG-proteins having the same total molecular weight of PEG adducts. Therefore, longer in vivo circulation half-lives of branched PEG-proteins compared to linear PEG-proteins are not explained by size difference. It is also calculated that the molecular size cut-off for glomerular filtration, 60 A for a 30 kDa PEG, matches the 30-50 A size range for the pores of the glomerular basement membrane. Finally, it is confirmed that prediction of PEG-protein viscosity radii should be based upon conservation of the total PEG adduct surface area to volume ratio for both linear and branched PEG-proteins regardless of PEGylation extent.  相似文献   

9.
Size exclusion chromatography (SEC) was used to determine the viscosity radii of equivalent spheres for proteins covalently grafted with poly(ethylene glycol) (PEG). The viscosity radius of such PEGylated proteins was found to depend on the molecular weight of the native protein and the total weight of grafted PEG but not on PEG molecular weight, or PEG-to-protein molar grafting ratio. Results suggest grafted PEG's form a dynamic layer over the surface of proteins. The geometry of this layer results in a surface area-to-volume ratio approximately equal to that of a randomly coiled PEG molecule of equivalent total molecular weight. Two simple methods are given to predict the viscosity radius of PEGylated proteins. Both methods accurately predicted (3% absolute error) the viscosity radii of various PEG-proteins produced using three native proteins, alpha-lactalbumin (14.2 kDa MW), beta-lactoglobulin dimer (37.4 kDa MW), and bovine serum albumin (66.7 kDa MW), three PEG reagents (2400, 5600, and 22500 MW), and molar grafting ratios of 0 to 8. Accurate viscosity radius prediction allows calculation of the distribution coefficient, K(av), for PEG-proteins in SEC. The suitability of a given SEC step for the analytical or preparative fractionation of different PEGylated protein mixtures may therefore be assessed mathematically. The methods and results offer insight to several factors related to the production, purification, and uses of PEGylated proteins.  相似文献   

10.
A molecular dynamics simulation study of four lipid bilayers with inserted trans-membrane helical fragment of epithelial growth factor (EGF) receptor (EGF peptide) was performed. The lipid bilayers differ in their lipid composition and consist of (i) unsaturated phosphatidylcholine (palmitoyloleoylphosphatidylcholine, POPC), (ii) POPC and 20 mol% of cholesterol (Chol), (iii) sphingomyelin (SM) and 20 mol% of Chol, and (iv) SM and 50 mol% of Chol. Only 1 out of 26 residues in the EGF-peptide sequence is polar (Thr). The hydrophobic thickness of each bilayer is different but shorter than the length of the peptide and so, due to hydrophobic mismatch, the inserted peptide is tilted in each bilayer. Additionally, in the POPC bilayer, which is the thinnest, the peptide loses its helical structure in a short three-amino acid fragment. This facilitates bending of the peptide and burying all hydrophobic amino acids inside the membrane core (Figure 1(b)). Bilayer lipid composition affects interactions between the peptide and lipids in the membrane core. Chol increases packing of atoms relative to the peptide side chains, and thus increases van der Waals interactions. On average, the packing around the peptide is higher in SM-based bilayers than POPC-based bilayers but for certain amino acids, packing depends on their position relative to the bilayer center. In the bilayer center, packing is higher in POPC-based bilayers, while in regions closer to the interface packing is higher in SM-based bilayers. In general, amino acids with larger side chains interact strongly with lipids, and thus the peptide sequence is important for the pattern of interactions at different membrane depths. This pattern closely resembles the shape of recently published lateral pressure profiles [Ollila et alJ. Struct. Biol. DOI:10.1016/j.jsb.2007.01.012].  相似文献   

11.
Diffusion in cell membranes is not just simple two-dimensional Brownian motion but typically depends on the timescale of the observation. The physical origins of this anomalous subdiffusion are unresolved, and model systems capable of quantitative and reproducible control of membrane diffusion have been recognized as a key experimental bottleneck. Here, we control anomalous diffusion using supported lipid bilayers containing lipids derivatized with polyethylene glycol (PEG) headgroups. Bilayers with specific excluded area fractions are formed by control of PEG lipid mole fraction. These bilayers exhibit a switch in diffusive behavior, becoming anomalous as bilayer continuity is disrupted. Using a combination of single-molecule fluorescence and interferometric imaging, we measure the anomalous behavior in this model over four orders of magnitude in time. Diffusion in these bilayers is well described by a power-law dependence of the mean-square displacement with observation time. Anomaleity in this system can be tailored by simply controlling the mole fraction of PEG lipid, producing bilayers with diffusion parameters similar to those observed for anomalous diffusion in biological membranes.  相似文献   

12.
Gas microbubbles present in ultrasound imaging contrast agents are stabilized by lipid aggregates that typically contain a mixture of lipids. In this study, the phase structure of the lipid mixtures that contained two or three lipids was investigated using three different methods: dynamic light scattering, 1H NMR, and microfluidity measurements with fluorescence probes. Three lipids that are commonly present in imaging agents (DPPC, DPPE-PEG, and DPPA) were used. Two types of systems, two-lipid model systems and simulated imaging systems were investigated. The results show that liposomes were the dominant aggregates in all the samples studied. The polar PEG side chains from the PEGylated lipid lead to the formation of micelles and micellar aggregates in small sizes. In the ternary lipid systems, almost all the lipids were present in bilayers with micelles absent and free lipids at very low concentration. These results suggest that liposomes, not micelles, contribute to the stabilization of microbubbles in an ultrasound imaging contrast agent.  相似文献   

13.
Despite intense study over many years, the mechanisms by which water and small nonelectrolytes cross lipid bilayers remain unclear. While prior studies of permeability through membranes have focused on solute characteristics, such as size, polarity, and partition coefficient in hydrophobic solvent, we focus here on water permeability in seven single component bilayers composed of different lipids, five with phosphatidylcholine headgroups and different chain lengths and unsaturation, one with a phosphatidylserine headgroup, and one with a phosphatidylethanolamine headgroup. We find that water permeability correlates most strongly with the area/lipid and is poorly correlated with bilayer thickness and other previously determined structural and mechanical properties of these single component bilayers. These results suggest a new model for permeability that is developed in the accompanying theoretical paper in which the area occupied by the lipid is the major determinant and the hydrocarbon thickness is a secondary determinant. Cholesterol was also incorporated into DOPC bilayers and X-ray diffuse scattering was used to determine quantitative structure with the result that the area occupied by DOPC in the membrane decreases while bilayer thickness increases in a correlated way because lipid volume does not change. The water permeability decreases with added cholesterol and it correlates in a different way from pure lipids with area per lipid, bilayer thickness, and also with area compressibility.  相似文献   

14.
With few exceptions, membrane lipids are usually regarded as a kind of filler or passive solvent for membrane proteins. Yet, cells exquisitely control membrane composition. Many phospholipids found in plasma membrane bilayers favor packing into inverted hexagonal bulk phases. It was suggested that the strain of forcing such lipids into a bilayer may affect membrane protein function, such as the operation of transmembrane channels. To investigate this, we have inserted the peptide alamethicin into bilayer membranes composed of lipids of empirically determined inverted hexagonal phase "spontaneous radii" Ro, which will have expectably different degrees of strain when forced into bilayer form. We observe a correlation between measured Ro and the relative probabilities of different conductance states. States of higher conductance are more probable in dioleoylphosphatidylethanolamine, the lipid of highest curvature, 1/Ro, than in dioleoylphosphatidylcholine, the lipid of lowest curvature.  相似文献   

15.
《Biophysical journal》2021,120(20):4525-4535
We performed a series of molecular dynamics simulations of cholesterol (Chol) in nonoxidized 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) bilayer and in binary mixtures of PLPC-oxidized-lipid-bilayers with 0–50% Chol concentration and oxidized lipids with hydroperoxide and aldehyde oxidized functional groups. From the 60 unbiased molecular dynamics simulations (total of 161 μs), we found that Chol inhibited pore formation in the aldehyde-containing oxidized lipid bilayers at concentrations greater than 11%. For both pure PLPC bilayer and bilayers with hydroperoxide lipids, no pores were observed at any Chol concentration. Furthermore, increasing cholesterol concentration led to a change of phase state from the liquid-disordered to the liquid-ordered phase. This condensing effect of Chol was observed in all systems. Data analysis shows that the addition of Chol results in an increase in bilayer thickness. Interestingly, we observed Chol flip-flop only in the aldehyde-containing lipid bilayer but neither in the PLPC nor the hydroperoxide bilayers. Umbrella-sampling simulations were performed to calculate the translocation free energies and the Chol flip-flop rates. The results show that Chol’s flip-flop rate depends on the lipid bilayer type, and the highest rate are found in aldehyde bilayers. As the main finding, we shown that Chol stabilizes the oxidized lipid bilayer by confining the distribution of the oxidized functional groups.  相似文献   

16.
Studies on the assembly of pure lipid components allow mechanistic insights toward understanding the structural and functional aspects of biological membranes. Molecular dynamic (MD) simulations on membrane systems provide molecular details on membrane dynamics that are difficult to obtain experimentally. A large number of MD studies have remained somewhat disconnected from a key concept of amphipathic assembly resulting in membrane structures—shape parameters of lipid molecules in those structures in aqueous environments. This is because most of the MD studies have been done on flat lipid membranes. With the above in view, we analyzed MD simulations of 26 pure lipid patches as a function of (1) lipid type(s) and (2) time of MD simulations along with 35–40 ns trajectories of five pure lipids. We report, for the first time, extraction of curvature preferences of lipids from MD simulations done on flat bilayers. Our results may lead to mechanistic insights into the possible origins of bilayer asymmetries and domain formation in biological membranes.  相似文献   

17.
The interactive properties of liposomes containing phospholipids with covalently attached poly(ethylene glycol) (PEG-lipids) are of interest because such liposomes are being developed as drug delivery vehicles and also are ideal model systems for measuring the properties of surface-grafted polymers. For bilayers containing PEG-lipids with PEG molecular weights of 350, 750, 2000, and 5000, pressure-distance relations have been measured by X-ray diffraction analysis of liposomes subjected to known applied osmotic pressures. The distance between apposing bilayers decreased monotonically with increasing applied pressure for each concentration of a given PEG-lipid. Although for bilayers containing PEG-350 and PEG-750 the contribution of electrostatic repulsion to interbilayer interactions was significant, for bilayers containing PEG-2000 and PEG-5000 the major repulsive pressure between bilayers was a steric pressure due to the attached PEG. The range and magnitude of this steric pressure increased both with increasing PEG-lipid concentration and PEG size, and the extension length of the PEG from the bilayer surface at maximum PEG-lipid concentration depended strongly on the size of the PEG, being less than 35 A for PEG-750, and about 65 A for PEG-2000 and 115 A for PEG-5000. The measured pressure-distance relations have been modeled in terms of current theories (deGennes, 1987; Milner et al., 1988b) for the steric pressure produced by surface-grafted polymers, as modified by us to take into account the effects of polymer polydispersity and the possibility that, at low grafting densities, polymers from apposing bilayers surfaces can interpenetrate or interdigitate. No one theoretical scheme is sufficient to account for all the experimental results. However, for a given pressure regime, PEG-lipid size, and PEG-lipid surface density, the appropriately modified theoretical treatment gives a reasonable fit to the pressure-distance data.  相似文献   

18.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the (31)P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. (2)H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. (31)P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, (31)P and (2)H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

19.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the 31P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. 2H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. 31P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, 31P and 2H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

20.
Daptomycin is a cyclic anionic lipopeptide with an antibiotic activity that is completely dependent on the presence of calcium (as Ca2+). In a previous study [Jung et al., 2004. Chem. Biol. 11, 949-957], it was concluded that daptomycin underwent two Ca2+-dependent structural transitions, whereby the first transition was solely dependent on Ca2+, while the second transition was dependent on both Ca2+ and the presence of negatively charged lipids that allowed daptomycin to insert into and perturb bilayer membranes with acidic character. Differences in the interaction of daptomycin with acidic and neutral membranes were further investigated by spectroscopic means. The lack of quenching of intrinsic fluorescence by the water-soluble quencher, KI, confirmed the insertion of the daptomycin Trp residue into the membrane bilayer, while the kynurenine residue was inaccessible even in an aqueous environment. Differential scanning calorimetry (DSC) indicated that the binding of daptomycin to neutral bilayers occurred through a combination of electrostatic and hydrophobic interactions, while the binding of daptomycin to bilayers containing acidic lipids primarily involved electrostatic interactions. The binding of daptomycin to acidic membranes led to the induction of non-lamellar lipid phases and membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号