首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M Hansen  L Jelinek  S Whiting    E Barklis 《Journal of virology》1990,64(11):5306-5316
We have studied the process of Moloney murine leukemia virus (M-MuLV) assembly by characterization of core (gag) protein mutants and analysis of wild-type (wt) gag proteins produced by cells in the presence of the ionophore monensin. Our genetic studies involved examination of linker insertion mutants of a Gag-beta-galactosidase (Gag-beta-gal) fusion protein, GBG2051, which is incorporated into virus particles when expressed in the presence of wt viral proteins. Analysis indicated that the amino-terminal two-thirds of the gag matrix domain is essential for targeting of proteins to the plasma membrane; mutant proteins localized to the cytoplasm or were trapped on intracellular membranes. Mutations through most of the coding region of the gag capsid domain generated proteins which were released from cells in membrane vesicles but not in virions. In contrast, linker insertions into p12gag or carboxy-terminal portions of the matrix or capsid coding regions did not affect assembly of fusion proteins into virus particles. Monensin, which blocks vesicular transport, inhibited gag protein intracellular transport and release from cells. Our results suggest that a significant proportion of M-MuLV myristylated gag proteins travel via vesicles to the cell surface. Specific matrix protein polypeptide regions and myristic acid modification are both necessary for appropriate gag protein transport, while capsid protein interactions appear to mediate the final phase of virion formation.  相似文献   

2.
《The Journal of cell biology》1996,135(6):1841-1852
Retrovirus Moloney murine leukemia virus (M-MuLV) matures by budding at the cell surface. Central to the budding process is the myristoylated viral core protein precursor Gag which, even in the absence of all other viral components, is capable of associating with the cytoplasmic leaflet of the plasma membrane and assembling into extracellular virus- like particles. In this paper we have used heterologous, Semliki Forest virus-driven, expression of M-MuLV Gag to study the mechanism by which this protein is targeted to the cell surface. In pulse-chase experiments, BFA, monensin, and 20 degrees C block did not affect incorporation of Gag into extracellular particles thereby indicating that the secretory pathway is not involved in targeting of Gag to the cell surface. Subcellular fractionation studies demonstrated that newly synthesized Gag became rapidly and efficiently associated with membranes which had a density similar to that of plasma membrane- derived vesicles. Protease-protection studies confirmed that the Gag- containing membranes were of plasma membrane origin, since in crude cell homogenates, the bulk of newly synthesized Gag was protease- resistant as expected of a protein that binds to the cytoplasmic leaflet of the plasma membrane. Taken together these data indicate that targeting of M-MuLV Gag to the cell surface proceeds via direct insertion of the protein to the cytoplasmic side of the plasma membrane. Furthermore, since the membrane insertion reaction is highly efficient and specific, this suggests that the reaction is dependent on as-yet-unidentified cellular factors.  相似文献   

3.
Both glycosylated and unglycosylated polyproteins coded by the gag gene are produced in cells infected with Moloney murine leukemia virus. GpP80gag is a glycosylated precursor of a larger gag glycoprotein exported to the cell surface, whereas Pr65gag is an unglycosylated precursor of the virion internal structural proteins. GpP80gag contains not only carbohydrate, but also additional polypeptide sequences not found in Pr65gag. In the experiment reported here, we localized the differences between GpP80gag and Pr65gag with respect to the domains of the individual gag proteins. This was done by comparison of partial proteolytic cleavage fragments from Pr65gag, from GpP80gag, and from the unglycosylated form of GpP80gag (P75gag) which had been immunoprecipitated by antisera specific for gag proteins p30, p15, and p10. We conclude that the additional polypeptide sequences in GpP80gag are located at or very near the amino terminus of the polyprotein. The carbohydrate in GpP80gag is attached to polypeptide sequences held in common between GpP80gag and Pr65gag.  相似文献   

4.
In order to define bovine leukemia virus (BLV) sequences required for efficient vector replication, a series of mutations were made in a BLV vector. Testing the replication efficiency of the vectors with a helper virus and helper plasmids allowed for separation of the mutant vectors into three groups. The replication efficiency of the first group was reduced by a factor of 7; these mutants contained deletions in the 5' end of the gag gene. The second group of mutants had replication reduced by a factor of 50 and had deletions including the 5' untranslated leader region. The third group of mutants replicated at levels comparable to those of the parental vector and contained deletions of the 3' end of the gag gene, the pol gene, and the env gene. Analysis of cytoplasmic and virion RNA levels indicated that vector RNA expression was not affected but that the vector RNA encapsidation was less efficient for group 1 and group 2 mutants. Additional mutations revealed two regions important for RNA encapsidation. The first region is a 132-nucleotide-base sequence within the gag gene (nucleotides 1015 to 1147 of the proviral DNA) and facilitates efficient RNA encapsidation in the presence of the second region. The second region includes a 147-nucleotide-base sequence downstream of the primer binding site (nucleotide 551) and near the gag gene start codon (nucleotide 698; gag begins at nucleotide 628) and is essential for RNA encapsidation. We conclude that the encapsidation signal is discontinuous; a primary signal, essential for RNA encapsidation, is largely in the untranslated leader region between the primer binding site and near the gag start codon. A secondary signal, which facilitates efficient RNA encapsidation, is in a 132-nucleotide-base region within the 5' end of the gag gene.  相似文献   

5.
The gag precursor polyprotein of Moloney murine leukemia virus (MuLV) is normally modified by myristylation of the N-terminal glycine. Previous work showed that the Pr65gag lacking the myristylation site does not associate with cellular membranes or assemble into virus particles. We now report that it also is not cleaved to the mature gag cleavage products within the cell and that it sediments as a free 65-kilodalton monomer in detergent-free cell extracts containing 0.3 M NaCl. Even when the cells containing the mutant are productively infected with wild-type MuLV, the mutant Pr65gag is not processed into cleavage products and is not incorporated into the virions produced by these cells. Thus, the mutant gag molecules seem unable to participate in the normal processes of self-assembly and maturation. We propose that myristate-mediated membrane association is an essential first step in MuLV assembly. This association may also play a role in budding of MuLV.  相似文献   

6.
The long terminal repeat of Moloney murine leukemia virus (MuLV) contains the upstream conserved region (UCR). The UCR core sequence, CGCCATTTT, binds a ubiquitous nuclear factor and mediates negative regulation of MuLV promoter activity. We have isolated murine cDNA clones encoding a protein, referred to as UCRBP, that binds specifically to the UCR core sequence. Gel mobility shift assays demonstrate that the UCRBP fusion protein expressed in bacteria binds the UCR core with specificity identical to that of the UCR-binding factor in the nucleus of murine and human cells. Analysis of full-length UCRBP cDNA reveals that it has a putative zinc finger domain composed of four C2H2 zinc fingers of the GLI subgroup and an N-terminal region containing alternating charges, including a stretch of 12 histidine residues. The 2.4-kb UCRBP message is expressed in all cell lines examined (teratocarcinoma, B- and T-cell, macrophage, fibroblast, and myocyte), consistent with the ubiquitous expression of the UCR-binding factor. Transient transfection of an expressible UCRBP cDNA into fibroblasts results in down-regulation of MuLV promoter activity, in agreement with previous functional analysis of the UCR. Recently three groups have independently isolated human and mouse UCRBP. These studies show that UCRBP binds to various target motifs that are distinct from the UCR motif: the adeno-associated virus P5 promoter and elements in the immunoglobulin light- and heavy-chain genes, as well as elements in ribosomal protein genes. These results indicate that UCRBP has unusually diverse DNA-binding specificity and as such is likely to regulate expression of many different genes.  相似文献   

7.
Ly H  Parslow TG 《Journal of virology》2002,76(7):3135-3144
Retroviral virions each contain two identical genomic RNA strands that are stably but noncovalently joined in parallel near their 5' ends. For certain viruses, this dimerization has been shown to depend on a unique RNA stem-loop locus, called the dimer initiation site (DIS), that efficiently homodimerizes through a palindromic base sequence in its loop. Previous studies with Moloney murine leukemia virus (Mo-MuLV) identified two alternative DIS loci that can each independently support RNA dimerization in vitro but whose relative contributions are unknown. We now report that both of these loci contribute to the assembly of the Mo-MuLV dimer. Using targeted deletions, point mutagenesis, and antisense oligonucleotides, we found that each of the two stem-loops forms as predicted and contributes independently to dimerization in vitro through a mechanism involving autocomplementary interactions of its loop. Disruption of either DIS locus individually reduced both the yield and the thermal stability of the in vitro dimers, whereas disruption of both eliminated dimerization altogether. Similarly, the thermal stability of virion-derived dimers was impaired by deletion of both DIS elements, and point mutations in either element produced defects in viral replication that correlated with their effects on in vitro RNA dimerization. These findings support the view that in some retroviruses, dimer initiation and stability involve two or more closely linked DIS loci which together align the nascent dimer strands in parallel and in register.  相似文献   

8.
Precursor polyproteins containing translational products of the gag gene of Moloney murine leukemia virus were purified by gel electrophoresis and cleaved into large fragments by hydroxylamine, mild acid hydrolysis, or cyanogen bromide. The hydroxylamine cleavage method (specific for asparagine-glycine bonds) was adapted especially for this study. The electrophoretic mobility and antigenicity of the fragments and, in some cases, the presence or absence of [35S]methionine revealed detailed information on the structure of Pr65gag, gPr80gag, and Pr75gag (the unglycosylated variant of gPr80gag formed in vivo in the presence of tunicamycin or in vitro in a reticulocyte cell-free system). When compared with Pr65gag, gPr80gag contains 7,000 daltons of additional amino acids, presumably as, or as part of, a leader sequence at or very close to its N terminus. We present evidence that this leader may have replaced part of the p15 sequence. Furthermore, gPr80gag contains three separate carbohydrate groups. One is attached to the presumed leader sequence or to the p15 domain, and two are attached to the p30 domain. Each of the Moloney murine leukemia virus gag precursor proteins Pr65gag, gPr80gag, and Pr75gag corresponds with a read-through product into the pol gene. We designated these products Pr180gag-pol, gPr200gag-pol, and Pr190gag-pol (the unglycosylated variant of gPr200gag-pol), respectively. gPr200gag-pol contains all of the extra amino acids and carbohydrate groups present in gPr80gag and at least one carbohydrate group in its pol sequences.  相似文献   

9.
A series of deletion mutations localized near the 5' end of the Moloney murine leukemia virus genome was generated by site-specific mutagenesis of cloned viral DNA. The mutants recovered from such deleted DNAs failed to synthesize the normal glycosylated gag protein gPr80gag. Two of the mutants made no detectable protein, and a third mutant, containing a 66-base pair deletion, synthesized an altered gag protein which was not glycosylated. All the mutants made normal amounts of the internal Pr65gag protein. The viruses were XC positive and replicated normally in NIH/3T3 cells as well as in lymphoid cell lines. These results indicate that the additional peptides of the glycosylated gag protein are encoded near the 5' end, that the glycosylated and internal gag proteins are synthesized independently, and that the glycosylated gag protein is not required during the normal replication cycle. In addition, the region deleted in these mutants apparently encodes no cis-acting function needed for replication. Thus, all essential sequences, including those for packaging viral RNA, must lie outside this area.  相似文献   

10.
11.
The Moloney murine sarcoma-leukemia virus [M-MSV (MuLV)], propagated at high multiplicity of infection (MOI), was demonstrated previously to contain a native genome mass of 4 X 10(6) daltons as contrasted to a mass of 7 X 10(6) daltons for Moloney murine leukemia virus (M-MuLV). The 4 X 10(6)-dalton classof RNA from M-MSV (MuLV) was examined for base sequence homology with DNA complementary to the 7 X 10(6)-dalton M-MuLV RNA genome. Approximately 86% of the M-MSV (MuLV) was protected from RNase digestion by hybridization, whereas 95% of M-MuLV was protected under identical conditions. These results indicate that the small RNA class of high-MOI M-MSV (MuLV) contains little (perhaps 10%) genetic information not present in M-MuLV. Virtually all of the 1.8 X 10(6)-dalton subunits of M-MSV (MuLV) RNA contained regions of poly(A) since 94% of the RNA bound to oligo(dT) cellulose in 0.5 M KCl. This suggests that the formation of the 1.8 X 10(6)-dalton subunits occurs before their packaging into virions and does not result from hydrolysis of intact 3.5 X 10(6)-dalton subunits by a virion-associated nuclease.  相似文献   

12.
The efficiencies with which homologous and heterologous proteins are incorporated into the envelope of Moloney murine leukemia virus (M-MuLV) have been analyzed by utilizing a heterologous, Semliki Forest virus-driven M-MuLV assembly system and quantitative pulse-chase assays. Homologous M-MuLV spike protein was found to be efficiently incorporated into extracellular virus particles when expressed at a relatively low density at the plasma membrane. In contrast, efficient incorporation of heterologous proteins (the spike complex of Semliki Forest virus and a cytoplasmically truncated mutant of the human transferrin receptor) was observed only when these proteins were expressed at high densities at the cell surface. These results imply that homologous and heterologous proteins are incorporated into the M-MuLV envelope via two distinct pathways.  相似文献   

13.
We have analyzed RNA packaging by a series of mutants altered in the nucleocapsid (NC) protein of Moloney murine leukemia virus (Mo-MuLV). We found that mutants lacking residues 8 through 11 or 44 through 60 of NC package Mo-MuLV RNA with virtually the same efficiency as wild-type Mo-MuLV. In contrast, point mutants altered at the conserved cysteines in the cysteine array (residues 26 and 29) and a mutant lacking residues 16 through 23 packaged Mo-MuLV RNA with approximately 1% of the efficiency of wild-type Mo-MuLV. The deficiency in packaged RNA was observed not only in Northern (RNA) analysis but also in an RNA-PCR assay, which would detect degraded as well as intact RNA. One of the cysteine array mutants was also shown to be defective with respect to encapsidation of hygromycin phosphotransferase mRNA containing a Mo-MuLV packaging signal. We suggest that a central region of NC, consisting of the cysteine array and flanking basic residues, is required for RNA packaging in Mo-MuLV.  相似文献   

14.
Murine leukemia virus (MLV) is currently the most widely used gene delivery system in gene therapy trials. The simple retrovirus packages two copies of its RNA genome by a mechanism that involves interactions between the nucleocapsid (NC) domain of a virally-encoded Gag polyprotein and a segment of the RNA genome located just upstream of the Gag initiation codon, known as the Psi-site. Previous studies indicated that the MLV Psi-site contains three stem loops (SLB-SLD), and that stem loops SLC and SLD play prominent roles in packaging. We have developed a method for the preparation and purification of large quantities of recombinant Moloney MLV NC protein, and have studied its interactions with a series of oligoribonucleotides that contain one or more of the Psi-RNA stem loops. At RNA concentrations above approximately 0.3 mM, isolated stem loop SLB forms a duplex and stem loops SL-C and SL-D form kissing complexes, as expected from previous studies. However, neither the monomeric nor the dimeric forms of these isolated stem loops binds NC with significant affinity. Longer constructs containing two stem loops (SL-BC and SL-CD) also exhibit low affinities for NC. However, NC binds with high affinity and stoichiometrically to both the monomeric and dimeric forms of an RNA construct that contains all three stem loops (SL-BCD; K(d)=132(+/-55) nM). Titration of SL-BCD with NC also shifts monomer-dimer equilibrium toward the dimer. Mutagenesis experiments demonstrate that the conserved GACG tetraloops of stem loops C and D do not influence the monomer-dimer equilibrium of SL-BCD, that the tetraloop of stem loop B does not participate directly in NC binding, and that the tetraloops of stem loops C and D probably also do not bind to NC. These surprising results differ considerably from those observed for HIV-1, where NC binds to individual stem loops with high affinity via interactions with exposed residues of the tetraloops. The present results indicate that MLV NC binds to a pocket or surface that only exists in the presence of all three stem loops.  相似文献   

15.
Genetic studies of the ploidy of Moloney murine leukemia virus.   总被引:1,自引:6,他引:1       下载免费PDF全文
An assay for Moloney murine leukemia virus was developed that made use of the production of morphologically altered foci in nonproducer mouse cells (15F) carrying murine sarcoma virus. Wild-type (wt) virus gave a ratio of titers at 39 degrees C/34degrees C = 1.05 +/- 0.45 (standard deviation;n = 20). A spontaneous, thermosensitive (ts) mutant of Moloney murine leukemia virus, ts3, defective in a late viral function, gave 39 degrees C/34degrees C = 0. A murine cell line (TB) was mixedly infected with ts3 and wt (multiplicities of infection, 7.8:4.3), cloned after infection, and shown to be infected by both viruses. At 34 degrees C it produced wt, ts, and particles of mixed parentage. The heterozygotes (hz) had ratios of assays 39 degrees C/34 degrees C = 0.06 to 0.84 (mean, 0.36). To eliminate possible interference by multiploid particles with determination of the proportions of the three types of particles, the virus produced by the mixedly infected, cloned cell line at 34 degrees C was distributed by velocity sedimentation in a sucrose gradient, and virus was picked from the lightest part of the gradient. The proportions of ts, wt, and hz were 0.27, 0.26, and 0.47. Those particles identified as hz segreated ts, wt, and hz in the proportions 0.24, 0.27, and 0.49, respectively. These values were not significantly different from those predicted from a diploid model of the genome.  相似文献   

16.
The full length, positive-strand genome of the Moloney Murine Leukemia Virus contains a "core encapsidation signal" that is essential for efficient genome packaging during virus assembly. We have determined the structure of a 101-nucleotide RNA that contains this signal (called mPsi) using a novel isotope-edited NMR approach. The method is robust and should be generally applicable to larger RNAs. mPsi folds into three stem loops, two of which (SL-C and SL-D) co-stack to form an extended helix. The third stem loop (SL-B) is connected to SL-C by a flexible, four-nucleotide linker. The structure contains five mismatched base-pairs, an unusual C.CG base-triple platform, and a novel "A-minor K-turn," in which unpaired adenosine bases A340 and A341 of a GGAA bulge pack in the minor groove of a proximal stem, and a bulged distal uridine (U319) forms a hydrogen bond with the phosphodiester of A341. Phylogenetic analyses indicate that these essential structural elements are conserved among the murine C-type retroviruses.  相似文献   

17.
18.
Retrovirus plus-strand synthesis is primed by a cleavage remnant of the polypurine tract (PPT) region of viral RNA. In this study, we tested replication properties for Moloney murine leukemia viruses with targeted mutations in the PPT and in conserved sequences upstream, as well as for pools of mutants with randomized sequences in these regions. The importance of maintaining some purine residues within the PPT was indicated both by examining the evolution of random PPT pools and from the replication properties of targeted mutants. Although many different PPT sequences could support efficient replication and one mutant that contained two differences in the core PPT was found to replicate as well as the wild type, some sequences in the core PPT clearly conferred advantages over others. Contributions of sequences upstream of the core PPT were examined with deletion mutants. A conserved T-stretch within the upstream sequence was examined in detail and found to be unimportant to helper functions. Evolution of virus pools containing randomized T-stretch sequences demonstrated marked preference for the wild-type sequence in six of its eight positions. These findings demonstrate that maintenance of the T-rich element is more important to viral replication than is maintenance of the core PPT.  相似文献   

19.
The gibbon ape leukemia virus, SEATO strain, and human T-cell leukemia virus type I envelope glycoproteins can be functionally assembled with a Moloney murine leukemia virus core into infectious particles. The envelope-host cell receptor interaction is the major determinant of the host cell specificity for these hybrid virions.  相似文献   

20.
We have addressed the question of the nature of Moloney murine leukemia virus (MoMuLV) repression in mouse embryos by assaying for the transient expression of MoMuLV-derived constructs microinjected into early cleavage embryos. We show that the same cis-acting DNA sequences responsible for the block in MoMuLV expression in embryonal carcinoma cell lines operate in early embryos: (i) the MoMuLV long terminal repeat is nonfunctional, and (ii) the +147 to +163 repressor binding site, or negative regulatory element, negatively regulates the expression from an active promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号