首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探索组蛋白浓度对核小体体外装配的影响,本研究表达纯化了4种组蛋白,通过控制实验反应体系中组蛋白的浓度,利用盐透析法在体外装配了核小体,检测分析了组蛋白浓度与核小体组装效率的关系。以此实验数据为基础,提出了核小体组装过程组蛋白浓度依赖性的动力学模型。实验结果发现,反应体系中组蛋白浓度与核小体生成量呈典型的线性关系。依据动力学理论模型,进行线性回归拟合,回归系数达到0.963;经计算601 DNA序列组装核小体的反应速率常数k为1.49×10^-5mL·h·μg^-1。CS1序列验证动力学模型的线性回归相关系数为0.989,反应速率常数为1.52×10^-5mL·h·μg^-1。该实验方法及动力学模型中反应速率常数k可用于评价相同长度的DNA序列组装核小体的能力、组蛋白与其突变体以及组蛋白变体之间形成核小体结构能力的差异。该动力学模型的建立为理解核小体装配、核小体定位、染色质结构等相关问题提供了理论指导。  相似文献   

2.
In eukaryotic cells, histones are packaged into octameric core particles with DNA wrapping around to form nucleosomes, which are the basic units of chromatin (Kornberg and Thomas, 1974). Multicellular organisms utilise chromatin marks to translate one single genome into hundreds of epigenomes for their corresponding cell types. Inheritance of epigenetic status is critical for the maintenance of gene expression profile during mitotic cell divisions (Allis et al., 2006). During S phase, canonical histones are deposited onto DNA in a replication-coupled manner (Allis et al., 2006). To understand how dividing cells overcome the dilution of epigenetic marks after chromatin duplication, DNA replication coupled (RC) nucleosome assembly has been of great interest. In this review, we focus on the potential influence of RC nucleosome assembly processes on the maintenance of epigenetic status.  相似文献   

3.
真核细胞的染色质组装是组蛋白和DNA有序地形成核小体和染色质的过程.通过调节DNA的开放或折叠状态,染色质组装不但影响遗传信息的编码和存储,也决定了遗传信息的提取和解读.作为染色质组装的重要调控因子,组蛋白变体和组蛋白伴侣在与DNA相关的生命活动进程中发挥着至关重要的作用.本文综述了组蛋白变体H2A.Z以及CENP-A进行染色质组装的研究进展,并着重讨论了组蛋白变体和组蛋白伴侣在染色质组装中的重要作用.  相似文献   

4.
Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres.By means of chromatin immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping.Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization.  相似文献   

5.
Histone chaperones that escort histones during their overall lifetime from synthesis to sites of usage can participate in various tasks. Their requirement culminates in the dynamic processes of nucleosome assembly and disassembly. In this context, it is important to define the exact role of the histone chaperone Asf1. In mammals, Asf1 interacts with two other chaperones, CAF-1 and HIRA, which are critical in DNA synthesis-coupled and synthesis-uncoupled nucleosome assembly pathways, respectively. A key issue is whether Asf1 is able or not to deposit histones onto DNA by itself in both pathways. Here, to delineate the precise role of Asf1 in chromatin assembly, we used Xenopus egg extracts as a powerful system to assay de novo chromatin assembly pathways in vitro. Following characterization of both Xenopus Asf1 and p60 (CAF-1), we used immunodepletion strategies targeting Asf1, HIRA, or CAF-1. Strikingly, the depletion of Asf1 led to the simultaneous depletion of HIRA and consequently impaired the DNA synthesis-independent nucleosome assembly pathway. The rescue of nucleosome assembly capacity in such extracts was effective when adding HIRA along with H3/H4 histones, yet addition of Asf1 along with H3/H4 histones did not work. Moreover, nucleosome assembly coupled to DNA repair was not affected in these Asf1/HIRA-depleted extracts, a pathway impaired by CAF-1 depletion. Thus, these data show that Asf1 is not directly involved in de novo histone deposition during DNA synthesis-independent and synthesis-dependent pathways in egg extracts. Based on our results, it becomes important to consider the implications for Asf1 function during early development in Xenopus.  相似文献   

6.
The traditional view of chromatin envisions two states: one is 'active' and accessible to nucleases, whereas the other is 'silent' and relatively inaccessible. Recent evidence that combinations of diverse histone tail modifications represent a spectrum of chromatin states challenges this simple view. Here, we examine inter-relationships between chromatin remodeling, histone modification, DNA methylation, RNA interference, and nucleosome assembly activities. We find that the two-state view can accommodate these new findings, and that nucleosome assembly pathways may ultimately maintain euchromatic and heterochromatic states.  相似文献   

7.
8.
Gunjan A  Paik J  Verreault A 《Biochimie》2005,87(7):625-635
Histone deposition onto nascent DNA is the first step in the process of chromatin assembly during DNA replication. The process of nucleosome assembly represents a daunting task for S-phase cells, partly because cells need to rapidly package nascent DNA into nucleosomes while avoiding the generation of excess histones. Consequently, cells have evolved a number of nucleosome assembly factors and regulatory mechanisms that collectively function to coordinate the rates of histone and DNA synthesis during both normal cell cycle progression and in response to conditions that interfere with DNA replication.  相似文献   

9.
We report here a mammalian cell-free system that can support chromatin assembly. Effective nucleosome assembly in HeLa cell extracts occurred at 125 to 200 mM KCl or potassium glutamate. At this physiological K+ ion concentration, two types of chromatin assembly were observed. The first was interfered with by Mg2+. Other cations such as Mn2+, Ca2+, Fe3+, and spermidine also inhibited this type of nucleosome assembly. The second type of assembly occurred in the presence of Mg2+ and at least equimolar ATP. However, even in the presence of ATP, excess Mg2+ inhibited assembly and promoted catenation of DNA; these effects could be circumvented by excess ATP, GTP, EDTA, or polyglutamic acid. The critical DNA concentration for optimum assembly in both pathways suggested a stoichiometric association of histones with DNA. The spacing of nucleosomes formed by both types of assembly on linear and circular DNA was reasonably regular, but chromatin assembled in the presence of ATP and Mg2+ was more stable.  相似文献   

10.
11.
It has been reported that chromatin assembly in mammalian cell extracts depends exclusively or preferentially on ongoing DNA replication (Stillman, B. (1986) Cell 45, 555-565). More recently, this view has been challenged demonstrating that, in the same extracts, chromatin can also be formed efficiently in the absence of DNA replication (Gruss et al. (1990) EMBO J. 9, 2911-2922). The experiments, described in this communication, were performed to resolve this apparent contradiction. We found that there are at least two distinct in vitro pathways for chromatin assembly in HeLa cell extracts. The replicative pathway requires a nuclear protein, most likely identical with the chromatin assembly factor, described by Stillman (1986, Cell 45, 555-565), and the free soluble histones present in the cytosol of S phase cells. In contrast, a non-replicative pathway was identified that depends on isolated nuclear histones. As one component of the non-replicative assembly pathway we identified a cytosolic factor that was purified to apparent homogeneity and shown to be an acidic 50 kDa polypeptide. The isolated cytosolic 50 kDa protein efficiently promoted nucleosome assembly as demonstrated by one- and two-dimensional gel electrophoresis of in vitro packaged plasmid DNA.  相似文献   

12.
Correct duplication of DNA sequence and its organization into chromatin is central to genome function and stability. However, it remains unclear how cells coordinate DNA synthesis with provision of new histones for chromatin assembly to ensure chromosomal stability. In this paper, we show that replication fork speed is dependent on new histone supply and efficient nucleosome assembly. Inhibition of canonical histone biosynthesis impaired replication fork progression and reduced nucleosome occupancy on newly synthesized DNA. Replication forks initially remained stable without activation of conventional checkpoints, although prolonged histone deficiency generated DNA damage. PCNA accumulated on newly synthesized DNA in cells lacking new histones, possibly to maintain opportunity for CAF-1 recruitment and nucleosome assembly. Consistent with this, in vitro and in vivo analysis showed that PCNA unloading is delayed in the absence of nucleosome assembly. We propose that coupling of fork speed and PCNA unloading to nucleosome assembly provides a simple mechanism to adjust DNA replication and maintain chromatin integrity during transient histone shortage.  相似文献   

13.
Protein-free DNA in a cytosolic extract supplemented with SV40 large T-antigen (T-Ag), is assembled into chromatin structure when nuclear extract is added. This assembly was monitored by topoisomer formation, micrococcal nuclease digestion and psoralen crosslinking of the DNA. Plasmids containing SV40 sequences (ori- and ori+) were assembled into chromatin with similar efficiencies whether T-Ag was present or not. Approximately 50-80% of the number of nucleosomes in vivo could be assembled in vitro; however, the kinetics of assembly differed on replicated and unreplicated molecules. In replicative intermediates, nucleosomes were observed on both the pre-replicated and post-replicated portions. We conclude that the extent of nucleosome assembly in mammalian cell extracts is not dependent upon DNA replication, in contrast to previous suggestions. However, the highly sensitive psoralen assay revealed that DNA replication appears to facilitate precise folding of DNA in the nucleosome.  相似文献   

14.
分子伴侣一词最初是指一类在细胞核内介导蛋白和核酸相互作用的生物分子.核质蛋白是第一个发现和命名的核内分子伴侣,它在体内以五聚体的形式存在,参与核小体的装配、染色质的重建以及细胞凋亡中染色质的聚缩等重要生命活动.其序列中富含的酸性氨基酸区带是核质蛋白行使功能的重要结构域,这些酸性区带通过屏蔽组蛋白中的正电荷,使得组蛋白能逐步有序地结合到DNA上装配成核小体.核质蛋白晶体结构的测定又将研究推向分子机制的深入探讨和作用模型的建立. 本文主要对核质蛋白的结构和生物学性质、核质蛋白的相关功能以及活性调节的研究进展作一综述.  相似文献   

15.
HIRA is an evolutionarily conserved histone chaperone that mediates replication-independent nucleosome assembly and is important for a variety of processes such as cell cycle progression, development, and senescence. Here we have used a chromatin sequencing approach to determine the genome-wide contribution of HIRA to nucleosome organization in Schizosaccharomyces pombe. Cells lacking HIRA experience a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we find that at its target promoters, HIRA commonly maintains the full occupancy of the ?1 nucleosome. HIRA does not affect global chromatin structure at replication origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of the genome. Nucleosome organization associated with the heterochromatic (dg-dh) repeats located at the centromere is perturbed by loss of HIRA function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR retrotransposons. Overall, our data indicate that HIRA plays an important role in maintaining nucleosome architecture at both euchromatic and heterochromatic loci.  相似文献   

16.
17.
Undiluted extracts from eggs or oocytes of Xenopus laevis support the assembly of chromatin with physiologically spaced nucleosomes. Micrococcal nuclease and DNase I digestion experiments show that nucleosome formation as well as supercoiling of circular DNA concomitant to assembly do not require ATP or Mg2+. However these factors are essential for the stability and the physiological spacing of the assembled chromatin. gamma-S-ATP can substitute for ATP in this process. With topoisomers of defined linking number topological interconversions proceed by steps of unity, both in vitro as well as in vivo, indicating that topoisomerase I is dominantly acting in this process. Novobiocin sensitivity occurred only with diluted extracts and was unrelated to an inhibition of topoisomerase II. Finally, nucleosome assembly occurs efficiently on linear DNA although the assembled DNA is less stable than with circular DNA. From these results we propose that mature chromatin is formed in a two-step reaction. In the first step, nucleosome deposition occurs independently of ATP and Mg2+. Thus, nucleosome formation can be uncoupled from their spacing. In this step, topoisomerase activity is involved in the relaxation of the topological constraints generated by chromatin assembly rather than in the process of assembly itself. The second step, requiring ATP and Mg2+, generates properly spaced chromatin.  相似文献   

18.
19.
Downs JA 《DNA Repair》2008,7(12):1938-2024
The role of chromatin and its modulation during DNA repair has become increasingly understood in recent years. A number of histone modifications that contribute towards the cellular response to DNA damage have been identified, including the acetylation of histone H3 at lysine 56. H3 K56 acetylation occurs normally during S phase, but persists in the presence of DNA damage. In the absence of this modification, cellular survival following DNA damage is impaired. Two recent reports provide additional insights into how H3 K56 acetylation functions in DNA damage responses. In particular, this modification appears to be important for both normal replication-coupled nucleosome assembly as well as nucleosome assembly at sites of DNA damage following repair.  相似文献   

20.
Some models of in vitro chromatin assembly suggest a biphasic molecular mechanism. The first phase, nucleosome formation, is comprised of the formation of histone-DNA complexes which mature into a canonical nucleosome structure. The second phase represents the process by which these nucleosomes become properly spaced with a regular periodicity on the DNA. In this report, we examine the role of DNA topoisomerases in the latter phase of chromatin assembly. To study this process, we use a Xenopus laevis cell-free extract, which assembles quantitative amounts of chromatin on circular DNA templates, and the type II topoisomerase-specific antitumor drugs VM-26 and endrofloxicin. Our results suggest that nucleosome formation is unaffected by the presence of VM-26 or endrofloxicin. However, periodic spacing of nucleosomes is inhibited significantly by these drugs. In the absence of proper chromatin assembly, circular DNA molecules are processed into nucleoprotein complexes which are transcribed poorly. Taken together, these results indicate that the antitumor drugs VM-26 and endrofloxicin influence gene expression indirectly by blocking the periodic spacing of nucleosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号