首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Binding of actinomycin D to DNA revealed by DNase I footprinting   总被引:6,自引:0,他引:6  
We have analyzed the specificity of the actinomycin D-DNA interaction. The 'footprint' method has been used in this investigation. It is shown that: (i) The presence of dinucleotide GC or GG is required for binding of a single drug molecule. (ii) The strong binding sites are encoded by tetranucleotide XGCY; where X not equal to G and Y not equal to C in accordance with RNA elongation hindrance sites [1]. (iii) There is a positive cooperativity in binding of actinomycin D with DNA.  相似文献   

3.
The interaction between some chromopore-modified daunorubicin derivatives and calf thymus DNA was studied using a number of physical techniques in order to investigate the effect substituents on the aromatic ring system have on the capacity to intercalate into DNA and on the DNA binding affinity. The modifications examined include methylation of the hydroxyl groups at the 6 and 11 positions of the B ring and removal of the 11-hydroxyl group. The studies showed that only 11-deoxydaunorubicin retains the ability to bind to DNA by the intercalation mechanism typical of the parent compound, although the structural modification leads to an appreciably weaker binding. In contrast, methylation of any hydroxyl group dramatically reduces the affinity of the drug for DNA. At physiological ionic strength both methyl ether derivatives showed no evidence of intercalation. Structure activity correlations for the intercalation reaction deduced from these studies are in agreement with earlier findings and hypotheses relating to antitumour activity.  相似文献   

4.
To examine the importance of the aromatic side chains of enkephalin on opiate activity, we report the synthesis and conformational analysis of a series of analogues related to enkephalin with beta-naphthylalanine in place of phenylalanine at the fourth position. Three linear analogues (Tyr-D-Ala-Gly-(L and D)-beta Nal(1)-Leu-NH2 and Tyr-D-Ala-Gly-beta Nal(2)-Leu-NH2) were initially synthesized to examine the effect of the substitution on biological activity. The increased activity of these peptides at the mu-opiate receptor, compared to native Leu-enkephalin, prompted us to examine the more conformational constrained analogues, Tyr-c[D-A2bu-Gly-(L and D)-beta Nal(1)-Leu], incorporating a alpha, gamma-diaminobutyric acid at the second position and cyclization to the carboxylic end of the leucine. These two cyclic analogues provide insight into the necessity for the L chirality of the aromatic residue at position 4. The Tyr-c[D-A2bu-Gly-L-beta Nal(1)-Leu] analogue is highly potent and displays a slight preference for the mu receptor. The conformational analysis indicates that despite the high flexibility of the tyrosine side chain, the aromatic rings of the tyrosine and naphthylalanine are relatively distant from each other. The presence of two intramolecular hydrogen bonds help maintain the conformation of the 14-membered backbone ring that keeps the side chains directed away from each other. These findings are in agreement with our model of an extended structure required for mu selectivity and a folded form with close aromatic ring placement for delta selectivity.  相似文献   

5.
A modified actinomycin D was prepared with a hydroxyl group that replaced the amino group at the chromophore 2-position, a substitution known to strongly reduce affinity for double-stranded DNA. Interactions of the modified drug on single-stranded DNAs of the defined sequence were investigated. Competition assays showed that 2-hydroxyactinomycin D has low affinity for two oligonucleotides that have high affinities (K(a) = 5-10 x 10(6) M(-1) oligomer) for 7-aminoactinomycin D and actinomycin D. Primer extension inhibition assays performed on several single-stranded DNA templates totaling around 1000 nt in length detected a single high affinity site for 2-hydroxyactinomycin D, while many high affinity binding sites of unmodified actinomycin D were found on the same templates. The sequence selectivity of 2-hydroxyactinomycin D binding is unusually high and approximates the selectivity of restriction endonucleases. Binding appears to require a complex structure, including residues well removed from the polymerase pause site.  相似文献   

6.
Binding of actinomycin D to calf thymus chromatin   总被引:5,自引:0,他引:5  
  相似文献   

7.
The interaction of actinomycin D and three new 7-substituted analogs with calf thymus DNA has been studied by a number of physical techniques. The methods utilized in this investigation include visible absorption spectrometry and ultrafiltration methodology for the determination of equilibrium binding constants; viscometry; and circular dichroism. The studies show that the 7-substituted actinomycin D analogs retain the G . C base pair specific DNA binding demonstrated by actinomycin D. The mode of binding to native DNA, despite substitution at position 7, is practically unaltered. The retention of this binding specificity by these analogs seems to be unaffected by changes in the electon properties of the chromophore.  相似文献   

8.
F M Chen 《Biochemistry》1988,27(17):6393-6397
Binding of actinomycin D (ACTD) to self-complementary decamers d(ATA-XGCY-TAT), where XGCY = TGCA, AGCT, CGCG, and GGCC, has been investigated by equilibrium, kinetic, and thermal denaturation studies. The results indicate that despite the presence of a GC dinucleotide sequence, -GGCC- exhibits a much weaker binding affinity toward ACTD than the other three tetranucleotide sequences. Binding constants estimated from Scatchard plots indicate that binding to the -GGCC- site is at least an order of magnitude weaker than binding to -CGCG- and -AGCT-, which in turn is only slightly weaker than binding to the -TGCA- sequence. At 18.5 degrees C and 1% SDS, ACTD dissociates from d-(ATA-TGCA-TAT) with a slow characteristic time of 3300 s, roughly 4 times slower than dissociation from those containing -CGCG- and -AGCT- sequences and more than 2 orders of magnitude slower than that from -GGCC-. An 18.2 degrees C increase in the melting temperature is observed for the -TGCA-containing decamer upon binding of the ACTD, whereas increases of 10.3, 6.7, and 2.0 degrees C are observed for the -CGCG-, -AGCT-, and -GGCC-containing decamers, respectively. The effects observed by changing the adjacent base pair (sequence) may occur as a result of differential stacking and/or peptide ring-DNA groove interactions. Base sequence alterations adjacent to the ACTD binding site may result in differences in the minor groove environment and/or subtle conformational alterations at the intercalation site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
F M Chen 《Biochemistry》1992,31(27):6223-6228
Studies on the binding specificity of actinomycin D (ACTD) to tetranucleotide sequences of the form -XGCY- have been extended to include the non-self-complementary sequences. ACTD binding characteristics are investigated by equilibrium, kinetic, and thermal denaturation for decameric duplexes d(ATA-XGCY-ATA)-d(TAT-Y'GCX'-TAT), where X and Y are complementary to X' and Y', respectively, but not to each other. The results indicate that when X = G or Y = C, the oligomers exhibit significantly weaker ACTD binding affinities, smaller melting temperature increases upon drug binding, and faster SDS-induced ACTD dissociation rates than the other sequences. Estimated binding constants at 18.5 degrees C for decameric duplexes containing -AGCA-/-TGCT-, -AGCG-/-CGCT-, or -CGCA-/-TGCG- are in the range of 4-9 microM-1, whereas for the ones containing -GGCT-/-AGCC-, -GGCA-/-TGCC-, or -GGCG-/-CGCC- they range from 0.6 to 2 microM-1. In contrast to the characteristic SDS-induced ACTD dissociation times of 600-1000 s for the stronger binding sites, the sequences containing X = G or Y = C exhibit at least an order of magnitude faster dissociation kinetics. These observations are further supported by the induced CD results and fluorescence measurements with 7-amino-ACTD. The findings from these non-self-complementary -XGCY- tetranucleotide sequences are consistent with those found earlier for the self-complementary counterparts, and they together clearly demonstrate that a base sequence alteration adjacent to the GC site can have a profound effect on the ACTD binding as well as dissociation characteristics, likely a consequence of subtle conformational alterations near the binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
12.
1. When rats received an intraperitoneal injection of [3H]actinomycin D, it bound to the RNA moiety of free and bound polysomes of rat liver. The labeling increased gradually up to 6 h or 6 + 6 h. The poly(A)-containing mRNA showed definite radioactivity and its specific activity was higher than that of rRNA, although the total radioactivity of rRNA was markedly higher than that of poly(A)-containing mRNAs. 2. An equilibrium dialysis method using rabbit globin mRNA showed that the binding constant of actinomycin D to globin mRNA was 0.056 x 10(6) M-1, and globin mRNA had 2 binding sites per mol for actinomycin D. 3. From the results of the present experiments and those described in the preceding paper, it is suggested that one of the mechanisms by which actinomycin D treatment in vivo and in vitro stimulates the template activity of mRNA may be binding to mRNA, which alters the conformation of mRNA.  相似文献   

13.
Mechanism of actinomycin D (AMD) and 7-aminoactinomycin D (7AAMD) interaction with DNA and model nucleotide compounds was studied by absorption and fluorescence spectroscopy (steady-state, phase-modulation, and polarization). It was shown that complex formation does not result in energy transfer from photoexcited nucleotides to phenoxazone chromophore of 7AAMD that indicates the absence of stacking-like intercalation. This fact is fundamentally important to explain the biological effect of actinomycin on cells. It was revealed a fundamental difference in the complex-forming properties of AMD and 7AAMD. Thus AMD is capable of binding to guanine micelles to destroy them. 7AAMD forms complexes neither guanine micelles nor polyguanilic acid. 7AAMD binding sites on DNA can differ substantially from AMD binding sites. However, a strong competition is observed between AMD and 7AAMD for binding site in oligonucleotide HP1 used as DNA hairpin model. The efficient diameters of 7AAMD-HP1 complex and free 7AAMD were determined using the Levshin-Perren equation.  相似文献   

14.
15.
Actinomycin D (ActD) is a DNA-binding antitumor antibiotic that appears to act in vivo by inhibiting RNA polymerase. The mechanism of DNA binding of ActD has attracted much attention because of its strong preference for 5'-dGpdC-3' sequences. Binding is thought to involve intercalation of the tricyclic aromatic phenoxazone ring into a GC step, with the two equivalent cyclic pentapeptide lactone substituents lying in the minor groove and making hydrogen bond contacts with the 2-amino groups of the nearest neighbor guanines. Recent studies have indicated, however, that binding is also influenced by next-nearest neighboring bases. We have examined this higher order specificity using 7-azido-actinomycin-D as a photoaffinity probe, and DNA sequencing techniques to quantitatively monitor sites of covalent photoaddition. We found that GC doublets were strongly preferred only if the 5'-flanking base was a pyrimidine and the 3'-flanking base was not cytosine. In addition we observed a previously unreported preference for binding at a GG doublet in the sequence 5'-TGGG-3'.  相似文献   

16.
1,5-Anhydrohexitol nucleoside congeners with alkoxy substituents, were prepared, resulting in a further improvement of their RNA affinity and antisense potential.  相似文献   

17.
18.
Unwinding of DNA by actinomycin D binding   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
Savintsev  I. V.  Vekshin  N. L. 《Molecular Biology》2002,36(4):575-580
The mechanism of actinomycin D (AMD) and 7-aminoactinomycin D (7AAMD) interaction with DNA and model nucleotide compounds was studied by absorption and fluorescence spectroscopy (steady-state, phase-modulation, and polarization). It was shown that complex formation does not result in energy transfer from photoexcited nucleotides to the phenoxazone chromophore of 7AAMD, which indicates the absence of stacking-like intercalation. This fact is fundamentally important to explain the biological effect of actinomycin on cells. A basic difference was revealed in the complex-forming properties of AMD and 7AAMD. Thus AMD is capable of binding to guanine micelles to destroy them; 7AAMD forms no complexes with either guanine micelles or polyguanylic acid. 7AAMD binding sites on DNA can differ substantially from AMD binding sites. However, strong competition is observed between AMD and 7AAMD for the binding site in oligonucleotide HP1 used as a DNA hairpin model. The effective diameters of 7AAMD–HP1 complex and free 7AAMD were determined using the Levshin–Perren equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号