首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Fanconi anemia group C protein (FANCC) plays an important role in hematopoiesis by ensuring the survival of hematopoietic progenitor cells through an unknown mechanism. We investigated the function of FANCC by identifying FANCC-binding proteins in hematopoietic cells. Here we show that glutathione S-transferase P1-1 (GSTP1) interacts with FANCC, and that overexpression of both proteins in a myeloid progenitor cell line prevents apoptosis following factor deprivation. FANCC increases GSTP1 activity after the induction of apoptosis. GSTP1 is an enzyme that catalyzes the detoxification of xenobiotics and by-products of oxidative stress, and it is frequently upregulated in neoplastic cells. Although FANCC lacks homology with conventional disulfide reductases, it functions by preventing the formation of inactivating disulfide bonds within GSTP1 during apoptosis. The prevention of protein oxidation by FANCC reveals a novel mechanism of enzyme regulation during apoptosis and has implications for the treatment of degenerative diseases with thiol reducing agents.  相似文献   

2.
3.
Mutations in the Fanconi anemia (FA) complementation group A (FANCA) gene leads to bone marrow failure, developmental abnormalities and cancer predisposition. To map the intracellular site of FANCA, we constructed a plasmid vector which linked in-frame the enhanced green fluorescent protein (EGFP cDNA) to the 5' end of the FANCA cDNA (pDAS-3). We studied the expression of pDAS-3 in the FANCA mutant fibroblast cell line (GM6914). MMC sensitivity of pDAS-3 transfected cells was comparable to wild-type fibroblasts. The resulting fluorescence pattern in the stable pDAS-3 cell line expressing the fusion protein was primarily nuclear. EGFP-selected cells (lacking FANCA) remain hypersensitive to MMC and maintained a cytoplasmic fluorescence pattern. Using deletion mutants of pDAS-3, a nuclear localization domain was identified at the amino terminus of the polypeptide. Western blot results of FANCA protein confirmed the presence of FANCA in nuclear fractions and FANCA protein levels did not vary during cell cycling. This nuclear trafficking of FANCA should guide future work in defining the function of this protein.  相似文献   

4.
Doxorubicin, a commonly used cancer chemotherapy agent, elicits several potent biological effects, including synergistic-antitumor activity in combination with cisplatin. However, the mechanism of this synergism remains obscure. Here, we employed an improved T7 phage display screening method to identify Fanconi anemia group F protein (FANCF) as a doxorubicin-binding protein. The FANCF-doxorubicin interaction was confirmed by pull-down assay and SPR analysis. FANCF is a component of the Fanconi anemia complex, which monoubiquitinates D2 protein of Fanconi anemia group as a cellular response against DNA cross-linkers such as cisplatin. We observed that the monoubiquitination was inhibited by doxorubicin treatment.  相似文献   

5.
Fanconi anemia (FA) is a human genetic disease featuring cancer predisposition, genetic instability and DNA damage hypersensitivity. Although abnormalities in DNA repair and cell cycle checkpoint have been proposed as the underlying defect in this syndrome, these hypotheses did not provide full explanations of the complex phenotype. Although not exclusive of such possibilities, alterations in the control of apoptosis might account for the pleiotropic phenotype of this syndrome. We and others have previously reported a deregulation of the apoptotic response to mitomycin C, suggesting that the products of the Fanconi anemia group C protein (FANCC) contribute to the regulation of apoptosis. To explore the functional importance of the apoptotic alterations in FA we analyzed biochemical steps of the execution phase of apoptosis stimulated by another DNA damaging agent, the gamma-ray using FA cell lines derived from complementation group C (FA-C) independent patients. It is shown that the poly(ADP-ribose) polymerase, a target of caspase-3, is not cleaved in FA-C after ionizing radiation (IR). Moreover, caspase-3 is not processed in its active form and, its activity is not increased by IR in FA-C cells compared to normal cells. Altogether, these results demonstrate that loss of the FANCC activity results in a deficiency of the IR-induced apoptosis which is due to an inability to activate caspase-3. Our work suggests that apoptosis signaling induced by mitomycin C and IR is subject to common regulation involving the FANCC protein.  相似文献   

6.
Fanconi anemia is a polygenic trait hypothesized to be a DNA damage repair disease. We show that all three Fanconi anemia loci that have been cloned are expressed in the embryonic gonad during the period of primordial germ cell proliferation. Mice mutant for the Fanconi anemia complementation group C locus (Fancc) have reduced germ cell numbers as early as embryonic day E12.5, suggesting the Fancc protein functions prior to meiosis in both sexes. Depletion in the mutant occurs at a time when all three loci would be expressed in a wild-type gonad, implying a function in the early germline. Determination of the mitotic index of primordial germ cells by BrdU incorporation shows that germ cells in Fancc(-/-) mice proliferate significantly more slowly than littermate controls. This study demonstrates Fancc is required for mitotic proliferation of primordial germ cells.  相似文献   

7.
MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.  相似文献   

8.
The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.  相似文献   

9.
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G2/M checkpoint in vitro and in vivo. Despite apparently normal induction of the G2/M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc-/-mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G2 checkpoint was observed in Fancc -/-; Trp53 -/-cells compared with Fancc -/-cells, indicating that Fancc and p53 cooperated to maintain the G2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.  相似文献   

10.
Fanconi anemia (FA) is an autosomal recessive chromosomal instability syndrome with at least seven different complementation groups. Four FA genes (FANCA, FANCC, FANCF, and FANCG) have been identified, and two other FA genes (FANCD and FANCE) have been mapped. Here we report the identification, by complementation cloning, of the gene mutated in FA complementation group E (FANCE). FANCE has 10 exons and encodes a novel 536-amino acid protein with two potential nuclear localization signals.  相似文献   

11.
It is known that the Fanconi anemia D2 protein is vital for protecting the genome from DNA damage, but what activities this protein has are unknown. In these experiments we purified full-length Fanconi anemia protein D2 (FANCD2), and we found that FANCD2 bound to DNA with specificity for certain structures: double strand DNA ends and Holliday junctions. Proteins containing patient-derived mutations or artificial variants of the FANCD2 protein were similarly expressed and purified, and each variant bound to the Holliday junction DNA with similar affinity as did the wild-type protein. There was no single discrete domain of FANCD2 protein that bound to DNA, but rather the full-length protein was required for structure-specific DNA binding. This finding of DNA binding is the first biochemical activity identified for this key protein in the Fanconi anemia pathway.  相似文献   

12.
Fanconi anemia (FA) is a recessive chromosomal instability syndrome that is clinically characterized by multiple symptoms. Chromosome breakage hypersensitivity to alkylating agents is the gold standard test for FA diagnosis. In this study, we provide a detailed laboratory protocol for accurate assessment of FA diagnosis based on mitomycin C (MMC) test. Induced chromosomal breakage study was successful in 171 out of 205 aplastic anemia (AA) patients. According to the sensitivity of MMC at 50 ng/ml, 38 patients (22.22%) were diagnosed as affected and 132 patients (77.17%) as unaffected. Somatic mosaicism was suspected in an 11-year-old patient with a FA phenotype. Twenty-six siblings of FA patients were also evaluated and five of them (19.23%) were diagnosed as FA. From this study, a standard protocol for diagnosis of FA was developed. It is routinely used as a diagnostic test of FA in Tunisia.  相似文献   

13.
Fanconi anemia is a chromosomal breakage disorder with eight complementation groups (A-H), and three genes (FANCA, FANCC, and FANCG) have been identified. Initial investigations of the interaction between FANCA and FANCC, principally by co-immunoprecipitation, have proved controversial. We used the yeast two-hybrid assay to test for interactions of the FANCA, FANCC, and FANCG proteins. No activation of the reporter gene was observed in yeast co-expressing FANCA and FANCC as hybrid proteins, suggesting that FANCA does not directly interact with FANCC. However, a high level of activation was found when FANCA was co-expressed with FANCG, indicating strong, direct interaction between these proteins. Both FANCA and FANCG show weak but consistent interaction with themselves, suggesting that their function may involve dimerisation. The site of interaction of FANCG with FANCA was investigated by analysis of 12 mutant fragments of FANCG. Although both N- and C-terminal fragments did interact, binding to FANCA was drastically reduced, suggesting that more than one region of the FANCG protein is required for proper interaction with FANCA.  相似文献   

14.
Fanconi anemia (FA) and Bloom's syndrome (BS) are rare hereditary chromosomal instability disorders. FA displays bone marrow failure, acute myeloid leukemia, and head and neck cancers, whereas BS is characterized by growth retardation, immunodeficiency, and a wide spectrum of cancers. The BLM gene mutated in BS encodes a DNA helicase that functions in a protein complex to suppress sister-chromatid exchange. Of the 15 FA genetic complementation groups implicated in interstrand crosslink repair, FANCJ encodes a DNA helicase involved in recombinational repair and replication stress response. Based on evidence that BLM and FANCJ interact we suggest that crosstalk between BLM and FA pathways is more complex than previously thought. We propose testable models for how FANCJ and BLM coordinate to help cells deal with stalled replication forks or double-strand breaks (DSB). Understanding how BLM and FANCJ cooperate will help to elucidate an important pathway for maintaining genomic stability.  相似文献   

15.
The Fanconi anemia (FA) protein FANCE is an essential component of the nuclear FA core complex, which is required for monoubiquitination of the downstream target FANCD2, an important step in the FA pathway of DNA cross-link repair. FANCE is predominantly localized in the nucleus and acts as a molecular bridge between the FA core complex and FANCD2, through direct binding of both FANCC and FANCD2. At present, it is poorly understood how the nuclear accumulation of FANCE is regulated and therefore we investigated the nuclear localization of this FA protein. We found that FANCE has a strong tendency to localize in the nucleus, since the addition of a nuclear export signal does not interfere with the nuclear localization of FANCE. We also demonstrate that the nuclear accumulation of FANCE does not rely solely on its nuclear localization signal motifs, but also on FANCC. The other FA proteins are not involved in the nuclear accumulation of FANCE, indicating a tight relationship between FANCC and FANCE, as suggested from their direct interaction. Finally, we show that the region of FANCE interacting with FANCC appears to be different from the region involved in binding FANCD2. This strengthens the idea that FANCE recruits FANCD2 to the core complex, without interfering with the binding of FANCC.  相似文献   

16.
Fanconi anemia (FA), a genetic disorder predisposing to aplastic anemia and cancer, is characterized by hypersensitivity to DNA-damaging agents and oxidative stress. Five of the cloned FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG) appear to be involved in a common functional pathway that is required for the monoubiquitination of a sixth gene product, FANCD2. Here, we report that FANCA associates with the IkappaB kinase (IKK) signalsome via interaction with IKK2. Components of the FANCA complex undergo rapid, stimulus-dependent changes in phosphorylation, which are blocked by kinase-inactive IKK2 (IKK2 K > M). When exposed to mitomycin C, cells expressing IKK2 K > M develop a cell cycle abnormality characteristic of FA. Thus, FANCA may function to recruit IKK2, thus providing the cell a means of rapidly responding to stress.  相似文献   

17.
Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells.  相似文献   

18.
Garner E  Smogorzewska A 《FEBS letters》2011,585(18):2853-2860
The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability.  相似文献   

19.
20.
The authors studied the effect of mitomycin C (MMC) and bromodeoxyuridine (BrdU) on the induction of chromosome aberrations on lymphocytes of four patients with Fanconi anemia (FA) and of one normal subject. A control culture and six experiments were designed to test the possible synergic effect of MMC and BrdU. Their results revealed no evidence of MMC-BrdU synergism on the induction of chromosome aberrations in FA lymphocytes. However, chromosomes showed more damage when FA cells were harvested 24 h after MMC stress than when cells were harvested shortly after treatment. This can be explained by a DNA repair defect or by a toxic effect of oxygenation of cells during the procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号