首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

2.
Xu YJ  Saini HK  Cheema SK  Dhalla NS 《Cell calcium》2005,38(6):569-579
Although lysophosphatidic acid (LPA) is known to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in vascular smooth muscle cells (VSMCs), the mechanisms of [Ca2+]i mobilization by LPA are not fully understood. In the present study, the effect of LPA on [Ca2+]i mobilization in cultured A10 VSMCs was examined by Fura-2 fluorescence technique. The expression of LPA receptors was studied by immunostaining. LPA was observed to increase [Ca2+]i in a concentration-dependent manner; this increase was dependent on the concentration of extracellular Ca2+. Both sarcolemmal (SL) Na(+)-Ca2+ exchange inhibitors (amiloride, Ni2+ and KB-R7943) and Na(+)-H+ exchange inhibitor (MIA) as well as SL store-operated Ca2+ channel (SOC) antagonists (SK&F 96365, tyrphostin A9 and gadolinium), unlike SL Ca2+ channel antagonists (verapamil and diltiazem), inhibited the LPA-induced increase in [Ca2+]i. In addition, sarcoplasmic reticulum (SR) Ca2+ channel blocker (ryanodine), SR Ca2+ channel opener (caffeine), SR Ca2+ pump ATPase inhibitor (thapsigargin) and inositol 1,4,5-trisphosphate (InsP3) receptor antagonists (xestospongin and 2-aminoethoxydiphenyl borate) were found to inhibit the LPA-induced Ca2+ mobilization. Furthermore, phospholipase C (PLC) inhibitor (U 73122) and protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) attenuated the LPA-induced increase in [Ca2+]i. These results indicate that Ca2+ mobilization by LPA involves extracellular Ca2+ entry through SL Na(+)-Ca2+ exchanger, Na(+)-H+ exchanger and SL SOCs. In addition, ryanodine-sensitive and InsP(3)-sensitive intracellular Ca2+ pools may be associated with the LPA-induced increase in [Ca2+]i. Furthermore, the LPA-induced [Ca2+]i mobilization in VSMCs seems to be due to the activation of both PLC and PKC.  相似文献   

3.
External bioenergy (EBE, energy emitted from a human body) has been shown to increase intracellular calcium concentration ([Ca2+]i, an important factor in signal transduction) and regulate the cellular response to heat stress in cultured human lymphoid Jurkat T cells. In this study, we wanted to elucidate the underlying mechanisms. A bioenergy specialist emitted bioenergy sequentially toward tubes of cultured Jurkat T cells for one 15-minute period in buffers containing different ion compositions or different concentrations of inhibitors. [Ca2+]i was measured spectrofluorometrically using the fluorescent probe fura-2. The resting [Ca2+]i in Jurkat T cells was 70 ± 3 nM (n = 130) in the normal buffer. Removal of external calcium decreased the resting [Ca2+]i to 52 ± 2 nM (n = 23), indicating that [Ca2+] entry from the external source is important for maintaining the basal level of [Ca2+]i. Treatment of Jurkat T cells with EBE for 15 min increased [Ca2+]i by 30 ± 5% (P 0.05, Student t-test). The distance between the bioenergy specialist and Jurkat T cells and repetitive treatments of EBE did not attenuate [Ca2+]i responsiveness to EBE. Removal of external Ca2+ or Na+, but not Mg2+, inhibited the EBE-induced increase in [Ca2+]i. Dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, also inhibited the EBE-induced increase in [Ca2+]i in a concentration-dependent manner with an IC50 of 0.11 ± 0.02 nM. When external [K+] was increased from 4.5 mM to 25 mM, EBE decreased [Ca2+]i. The EBE-induced increase was also blocked by verapamil, an L-type voltage-gated Ca2+ channel blocker. These results suggest that the EBE-induced [Ca2+]i increase may serve as an objective means for assessing and validating bioenergy effects and those specialists claiming bioenergy capability. The increase in [Ca2+]i is mediated by activation of Na+/Ca2+ exchangers and opening of L-type voltage-gated Ca2+ channels. (Mol Cell Biochem 271: 51–59, 2005)  相似文献   

4.
The data presented in this work suggest that in human umbilical artery (HUA) smooth muscle cells, the Na(+)/Ca(2+) exchanger (NCX) is active and working in the reverse mode. This supposition is based on the following results: (i) microfluorimetry in HUA smooth muscle cells in situ showed that a Ca(2+)-free extracellular solution diminished intracellular Ca(2+) ([Ca(2+)](i)), and KB-R7943 (5microM), a specific inhibitor of the Ca(2+) entry mode of the exchanger, also decreased [Ca(2+)](i) (40.6+/-4.5% of Ca(2+)-free effect); (ii) KB-R7943 produced the relaxation of HUA rings (-24.7+/-7.3gF/gW, n=8, p<0.05); (iii) stimulation of the NCX by lowering extracellular Na(+) increases basal [Ca(2+)](i) proportionally to Na(+) reduction (Delta fluorescence ratio=0.593+/-0.141 for Na(+)-free solution, n=8) and HUA rings' contraction (peak force=181.5+/-39.7 for 130mM reduction, n=8), both inhibited by KB-R7943 and a Ca(2+)-free extracellular solution. In conclusion, the NCX represents an important Ca(2+) entry route in HUA smooth muscle cells.  相似文献   

5.
Although the importance of mitochondria in patho-physiology has become increasingly evident, it remains unclear whether these organelles play a role in Ca(2+) handling by skeletal muscle. This undefined situation is mainly due to technical limitations in measuring Ca(2+) transients reliably during the contraction-relaxation cycle. Using two-photon microscopy and genetically expressed "cameleon" Ca(2+) sensors, we developed a robust system that enables the measurement of both cytoplasmic and mitochondrial Ca(2+) transients in vivo. We show here for the first time that, in vivo and under highly physiological conditions, mitochondria in mammalian skeletal muscle take up Ca(2+) during contraction induced by motor nerve stimulation and rapidly release it during relaxation. The mitochondrial Ca(2+) increase is delayed by a few milliseconds compared with the cytosolic Ca(2+) rise and occurs both during a single twitch and upon tetanic contraction.  相似文献   

6.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

7.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

8.
K. R. Robinson 《Planta》1977,136(2):153-158
The effect of external calcium and sodium ion concentrations on the calcium fluxes on the Pelvetia fastigiata De Toni egg was measured. Decreasing external [Ca2+] greatly increased the permeability of the eggs to Ca2+; at 1 mM external Ca2+ this permeability was 60 times as great as it was at the normal [Ca2+] of 10 mM. Lowering the external [Na+] also increased Ca2+ influx; at 2 mM Na+, the Ca2+ influx was 2–3 times as great as it was at the normal [Na+] if choline was used as a Na+ substitute. Lithium was less effective as a Na+ substitute in increasing Ca2+ influx. The extra Ca2+ influx in low [Na+] seemed to be dependent on internal [Na+]. The Ca2+ efflux increased transiently and then declined in low Na+ media.  相似文献   

9.
Reversal of the plasma membrane Na(+)/Ca(2+) exchanger (NCX) has been shown to mediate Ca(2+) influx in response to activation of G-protein linked receptors. Functional coupling of reverse-mode NCX with canonical transient receptor potential channels (TRPC), specifically TRPC6, has recently been demonstrated by our laboratory to mediate Ca(2+) influx in rat aortic smooth muscle cells (RASMCs) following ATP stimulation. In this communication, we provide further detail of this functional coupling by indirectly measuring NCX reversal. We found that NCX reversal, induced by the removal of extracellular Na(+), was increased following stimulation with ATP and the diacylglycerol analog 1-Oleoyl-2-acetyl-sn-glycerol. This increased NCX reversal was attenuated by SKF-96365, an inhibitor of non-selective cation channels, and by activation of protein kinase C with phorbol ester 12-tetradecanoylphorbol-13 acetate. These data are consistent with the known properties of TRPC6 and further support that functional coupling of TRPC6 and NCX occurs via a receptor-operated, rather than store-operated, cascade in RASMCs.  相似文献   

10.
Oxygen free radicals and calcium homeostasis in the heart   总被引:10,自引:0,他引:10  
Many experiments have been done to clarify the effects of oxygen free radicals on Ca2+ homeostasis in the hearts. A burst of oxygen free radicals occurs immediately after reperfusion, but we have to be reminded that the exact levels of oxygen free radicals in the hearts are yet unknown in both physiological and pathophysiological conditions. Therefore, we should give careful consideration to this point when we perform the experiments and analyze the results. It is, however, evident that Ca2+ overload occurs when the hearts are exposed to an excess amount of oxygen free radicals. Though ATP-independent Ca2+ binding is increased, Ca2+ influx through Ca2+ channel does not increase in the presence of oxygen free radicals. Another possible pathway through which Ca2+ can enter the myocytes is Na+?Ca2+ exchanger. Although, the activities of Na+?K+ ATPase and Na+?H+ exchange are inhibited by oxygen free radicals, it is not known whether intracellular Na+ level increases under oxidative stress or not. The question has to be solved for the understanding of the importance of Na+?Ca2+ exchange in Ca2+ influx process from extracellular space. Another question is ‘which way does Na+?Ca2+ exchange work under oxidative stress? Net influx or efflux of Ca2+?’ Membrane permeability for Ca2+ may be maintained in a relatively early phase of free radical injury. Since sarcolemmal Ca2+-pump ATPase activity is depressed by oxygen free radicals, Ca2+ extrusion from cytosol to extracellular space is considered to be reduced. It has also been shown that oxygen free radicals promote Ca2+ release from sarcoplasmic reticulum and inhibit Ca2+ sequestration to sarcoplasmic reticulum. Thus, these changes in Ca2+ handling systems could cause the Ca2+ overload due to oxygen free radicals.  相似文献   

11.
Ca2+ mobilization in muscle cells from the circular muscle layer of the mammalian intestine is mediated by IP3-dependent Ca2+ release. Ca2+ mobilization in muscle from the adjacent longitudinal muscle layer involves a distinct, phosphoinositide-independent pathway. Receptors for contractile agonists in longitudinal muscle cells are coupled via a pertussis toxinsensitive G protein to activation of PLA2 and formation of arachidonic acid (AA). The latter activates Cl channels resulting in depolarization of the plasma membrane and opening of voltage-sensitive Ca2+ channels. Ca2+ influx via these channels induces Ca2+ release by activating sarcoplasmic ryanodine receptor/Ca2+ channels. The increase in [Ca2+]i activates membrane-bound ADP ribosyl cyclase, and the resultant formation of cADPR enhances Ca2+-induced Ca2+ release.  相似文献   

12.
Summary Microsomal fractions were isolated from gastric antrum and fundus smooth muscle of guinea pigs. Ca2+ uptake into and Ca2+ release from the membrane vesicles were studied by a rapid filtration method, and Ca2+ transport properties of the different regions of the stomach were compared. ATP-dependent Ca2+ uptake was similar in microsomes isolated from both regions. This uptake was increased by oxalate and was not affected by NaN3. Oxalate affected Ca2+ permeability of both antrum and fundus microsome vesicles similarly. Fundus microsome vesicles preincubated in 100mm NaCl and then diluted to 1/20 concentration with Na+-free medium had significantly higher ATP-independent Ca2+ uptake than vesicles preincubated in 100mm KCl and treated the same way. This was not true for antrum vesicles. Monensin abolished Na+-dependent Ca2+ uptake, and NaCl enhanced Ca2+ efflux from fundus microsome vesicles. The halflife values of Ca2+ loss from fundus vesicles in the presence of NaCl were significantly smaller than those in the presence of KCl. The release of Ca2+ from the vesicles within the first 3 min was accelerated by NaCl to three times that by KCl. However, NaCl had ro effect on Ca2+ release from antrum microsome vesicles.Results suggest two distinct mechanisms of stomach membrane Ca2+ transport: (1) ATP-dependent Ca2+ uptake and (2) Na+–Ca2+ exchange; the latter in the fundus only.  相似文献   

13.
Two Ca2+ sequestering proteins were studied in fast-twitch (EDL) and slow-twitch (soleus) muscle sarcoplasmic reticulum (SR) as a function of denervation time. Ca2+-ATPase activity measured in SR fractions of normal soleus represented 5% of that measure in SR fractions of normal EDL. Denervation caused a severe decrease in activity only in fast-twich muscle. Ca2+-ATPase and calsequestrin contents were affected differently by denervation. In EDL SR, Ca2+-ATPase content decreased progressively, whereas in soleus SR, no variation was observed. Calsequestrin showed a slight increase in both muscles as a function of denervation time correlated with increased45Ca-binding.These results indicate first that Ca2+-ATPase activity in EDL was under neural control, and that because of low Ca2+-ATPase activity and content in slow-twitch muscle no variation could be detected, and secondly that greater calsequestrin content might represent a relative increasing of heavy vesicles or decreasing of light vesicles as a function of denervation time in the whole SR fraction isolated in both types of muscles.  相似文献   

14.
Summary Using the patch-clamp technique, we recorded whole-cell calcium current from isolated cardiac myocytes dissociated from the apical ventricles of 7-day and 14-day chick embryos. In 70% of 14-day cells after 24 hr in culture, two component currents could be separated from totalI Ca activated from a holding potential (V h) of –80 mV. L-type current (I L) was activated by depolarizing steps fromV h –30 or –40 mV. The difference current (I T) was obtained by subtractingI L, fromI Ca.I T could also be distinguished pharmacologically fromI L in these cells.I T was selectively blocked by 40–160 m Ni2+, whereasI L was suppressed by 1 m D600 or 2 m nifedipine. The Ni2+-resistant and D600-resistant currents had activation thresholds and peak voltages that were near those ofI T andI L defined by voltage threshold, and resembled those in adult mammalian heart. In 7-day cells,I T andI L could be distinguished by voltage threshold in 45% (S cells), while an additional 45% of 7-day cells were nonseparable (NS) by activation voltage threshold. Nonetheless, in mostNS cells,I Ca was partly blocked by Ni2+ and by D600 given separately, and the effects were additive when these agents were given together. Differences among the cells in the ability to separateI T andI L by voltage threshold resulted largely from differences in the position of the steady-state inactivation and activation curves along the voltage axis. In all cells at both ages in which the steady-state inactivation relation was determined with a double-pulse protocol, the half-inactivation potential (V 1/2) of the Ni2+-resistant currentI L averaged –18 mV. In contrast,V 1/2 of the Ni2+-sensitiveI T was –60 mV in 14-day cells, –52 mV in 7-dayS cells, and –43 mV in 7-day NS cells. The half-activation potential was near –2 mV forI L at both ages, but that ofI T was –38 mV in 14-day and –29 mV in 7-day cells. Maximal current density was highly variable from cell to cell, but showed no systematic differences between 7-day and 14-day cells. These results indicate that the main developmental change that occurs in the components ofI Ca is a negative shift with, embryonic age in the activation and inactivation relationships ofI T along the voltage axis.  相似文献   

15.
线粒体和细胞内钙自稳平衡   总被引:10,自引:0,他引:10  
线粒体对胞浆钙信号调节作用的研究已经历较长时间.近年,随着研究方法和技术的不断改进,发现在绝大多数生理条件下,线粒体都能参与胞内钙通信过程.线粒体可感受其周围钙微区的存在从而摄取钙,又可以通过钠-钙交换和大分子孔道将钙释放出来,因此可以调节胞浆钙信号的时空特性,影响相关的细胞功能.但是,由于技术上的局限性,目前的研究仍然存在模糊不清和自相矛盾之处,有待于进一步研究.  相似文献   

16.
Reversal of the Na+/Ca2+ -exchanger (NCX) has been shown to mediate Ca2+ influx during activation of G-protein linked receptors. Functional coupling between the reverse-mode NCX and the canonical transient receptor potential channels (TRPCs) has been proposed to mediate Ca2+ influx in HEK-293 cells overexpressing TRPC3. In this communication we present evidence for similar functional coupling of NCX to endogenously expressed TRPC6 in rat aorta smooth muscle cells. Selective inhibition of reverse-mode NCX with KB-R7943 and of non-selective cation-channels with SKF-96365 abolished Ca2+ influx in response to agonist stimulation (ATP). Expression of a dominant negative TRPC6 mutant also reduced the Ca2+ influx in proportion to its transfection efficiency. Calyculin A, which is known to disrupt the junctions of the plasma membrane and sarco/endoplasmic reticulum, increased global Na+ elevations and reduced stimulated Ca2+ influx. Together our data provide evidence that localized Na+ elevations are generated by TRPC6 and drive reversal of NCX to mediate Ca2+ influx.  相似文献   

17.
Phosphatidylinositol biphosphate (PtdIns-4,5P2) plays a key role in the regulation of the mammalian heart Na+/Ca2+ exchanger (NCX1) by protecting the intracellular Ca2+ regulatory site against H+i and (H+i + Na+i) synergic inhibition. MgATP and MgATP-γ-S up-regulation of NCX1 takes place via the production of this phosphoinositide. In microsomes containing PtdIns-4,5P2 incubated in the absence of MgATP and at normal [Na+]i, alkalinization increases the affinity for Ca2+i to the values seen in the presence of the nucleotide at normal pH; under this condition, addition of MgATP does not increase the affinity for Ca2+i any further. On the other hand, prevention of Na+i inhibition by alkalinization in the absence of MgATP does not take place when the microsomes are depleted of PtdIns-4,5P2. Experiments on NCX1–PtdIns-4,5P2 cross-coimmunoprecipitation show that the relevant PtdIns-4,5P2 is not the overall membrane component but specifically that tightly attached to NCX1. Consequently, the highest affinity of the Ca2+i regulatory site is seen in the deprotonated and PtdIns-4,5P2-bound NCX1. Confirming these results, a PtdIns-5-kinase also cross-coimmunoprecipitates with NCX1 without losing its functional competence. These observations indicate, for the first time, the existence of a PtdIns-5-kinase in the NCX1 microdomain.  相似文献   

18.
Diabetes mellitus (DM) is a serious metabolic disorder with micro- and macrovascular complications that results in significant morbidity and mortality. It is well established that cytosolic Ca2+ play an important role in controlling insulin secretion in pancreatic β-cells. The Na+/Ca2+ exchanger (NCX), an ion transport protein, is expressed in the plasma membrane of virtually all animal cells. NCX is a reversible carrier that can mediate the transport of Ca2+ across the plasma membrane in both directions. Therefore, great efforts have been made to identify NCX associated with DM. NCX is expressed in several tissues, and acts in the protection against intracellular calcium overload; in the regulation of insulin secretion by beta cells, and in improving vascular endothelium-dependent relaxation. All these mechanisms are associated with DM pathogenesis and its chronic complications. Therefore, NCX is a candidate protein for the development of these disorders. Only a few studies investigated NCX in relation to chronic complications of diabetes, with inconclusive results.  相似文献   

19.
Summary Measurements of unidirectional calcium fluxes in stripped intestinal epithelium of the tilapia,Oreochromis mossambicus, in the presence of ouabain or in the absence of sodium indicated that calcium absorption via the fish intestine is sodium dependent. Active Ca2+ transport mechanisms in the enterocyte plasma membrane were analyzed. The maximum capacity of the ATP-dependent Ca2+ pump (V m :0.63 nmol·min–1 mg–1,K m : 27nm Ca2+) is calculated to be 2.17 nmol·min–1·mg–1, correcting for 29% inside-out oriented vesicles in the membrane preparation. The maximum capacity of the Na+/Ca2+ exchanger with high affinity for Ca2+ (V m :7.2 nmol·min–1·mg–1,K m : 181nm Ca2+) is calculated to be 13.6 nmol·min–1·mg–1, correcting for 53% resealed vesicles and assuming symmetrical behavior of the Na+/Ca2+ exchanger. The high affinity for Ca2+ and the sixfold higher capacity of the exchanger compared to the ATPase suggest strongly that the Na+/Ca2+ exchanger will contribute substantially to Ca2+ extrusion in the fish enterocyte. Further evidence for an important contribution of Na+/Ca2+ exchange to Ca2+ extrusion was obtained from studies in which the simultaneous operation of ATP-and Na+-gradient-driven Ca2+ pumps in inside-out vesicles was evaluated. The fish enterocyte appears to present a model for a Ca2+ transporting cell, in which Na+/Ca2+ exchange activity with high affinity for Ca2+ extrudes Ca2+ from the cell.  相似文献   

20.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号