首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

2.
The distribution and chemical coding of neurons in the porcine left and right inferior mesenteric ganglion projecting to the ascending colon and rectum have been investigated by using combined retrograde tracing and double-labelling immunohistochemistry. The ganglion contained many neurons supplying both gut regions. The colon-projecting neurons (CPN) occurred exclusively in the cranial part of the ganglia where they formed a large cluster distributed along the dorso-lateral ganglionic border and a smaller cluster located close to the caudal colonic nerve output. The rectum-projecting neurons (RPN) formed a long stripe along the entire length of the lateral ganglionic border and, within the right ganglion only, a small cluster located close to the caudal colonic nerve output. Immunohistochemistry revealed that the vast majority of the CPN and RPN were noradrenergic (tyrosine-hydroxylase-positive). Many noradrenergic neurons supplying the colon contained somatostatin or, less frequently, neuropeptide Y. In contrast, a significant subpopulation of the noradrenergic RPN expressed neuropeptide Y, whereas only a small proportion contained somatostatin. A small number of the non-adrenergic RPN were cholinergic (choline-acetyltransferase-positive) and a much larger subpopulation of the nerve cells supplying both the colon and rectum were non-adrenergic and non-cholinergic. Many cholinergic neurons contained neuropeptide Y. The non-adrenergic non-cholinergic neurons expressed mostly somatostatin or neuropeptide Y and some of those projecting to the rectum contained nitric oxide synthase, galanin or vasoactive intestinal polypeptide. Many of both the CPN and RPN were supplied with varicose nerve fibres exhibiting immunoreactivity against Leu5-enkephalin, somatostatin, choline-acetyltransferase, vasoactive intestinal polypeptide or nitric oxide synthase The somatotopic and neurochemical organization of this relatively large population of differently coded inferior mesenteric ganglion neurons projecting to the large bowel indicates that these cells are probably involved in intestino-intestinal reflexes controlling peristaltic and secretory activities.  相似文献   

3.
Summary The uterine cervix, urinary bladder and rectum of guinea pigs were injected with Fast Blue dye for retrograde transport studies. Dye-laden neuronal perikarya were detected for each viscus in the paracervical ganglion. These same perikarya also exhibited immunoreactivities for tyrosine hydroxylase, aromatic amino acid decarboxylase, dopamine -hydroxylase, neuropeptide Y, or vasoactive intestinal peptide, though the perikarya projecting to the urinary bladder did not exhibit immunoreactivity for aromatic amino acid decarboxylase. The results of this study indicate that the guinea-pig paracervical ganglion projects to viscera in addition to the uterus, and that the ganglion contains a range of immunoreactivities related to adrenergic and non-adrenergic neurotransmitters.  相似文献   

4.
 Immunohistochemical studies have been performed to investigate the occurrence and coexistence of two catecholamine-synthesising enzymes, tyrosine hydroxylase and dopamine-β-hydroxylase, and several neuropeptides, including neuropeptide Y, vasoactive intestinal polypeptide, Leu5-enkephalin, somatostatin, calcitonin gene-related peptide and substance P, in nerve fibres supplying porcine accessory genital glands, the seminal vesicles, prostate (body and the disseminated part) and bulbourethral glands. Three major populations of nerve fibres supplying non-vascular elements of the glands have been distinguished (from the largest to the smallest one): (1) noradrenergic fibres, the majority of which contain Leu5-enkephalin, neuropeptide Y or, to a lesser extent, somatostatin, (2) non-noradrenergic, putative cholinergic fibres containing vasoactive intestinal polypeptide, neuropeptide Y and/or somatostatin and, (3) non-noradrenergic, presumably sensory fibres, containing calcitonin gene-related peptide and substance P. Whilst the coexistence patterns within nerves supplying particular glands are similar, the density of innervation varies between the organs. The innervation of the seminal vesicles and prostatic body is more developed than that of the disseminated part of the prostate and bulbourethral glands. The majority of noradrenergic fibres related to blood vessels contain neuropeptide Y only, while the non-noradrenergic nerves contain mainly vasoactive intestinal polypeptide. The possible function and origin of particular nerve fibre populations are discussed. Accepted: 16 November 1998  相似文献   

5.
 Double-labelling immunofluorescence was used to investigate the coexistence of the catecholamine-synthesising enzymes, tyrosine hydroxylase and dopamine-β-hydroxylase and several neuropeptides including neuropeptide Y, vasoactive intestinal polypeptide, Leu5-enkephalin, somatostatin, calcitonin gene-related peptide and substance P in nerve fibres supplying the vas deferens in juvenile and adult pigs. The study has revealed three major populations of nerve terminals innervating the organ: (1) noradrenergic fibres; (2) non-noradrenergic (putative cholinergic) fibres containing vasoactive intestinal polypeptide, neuropeptide Y and somatostatin, supplying almost exclusively the lamina propria; and (3) non-noradrenergic, presumably sensory fibres, containing calcitonin gene-related peptide and substance P. The population of noradrenergic nerves can be divided into three subpopulations: a somatostatin-containing, a Leu5-enkephalin-containing and a subpopulation immunonegative to the peptides investigated, in descending order of magnitude. Coexistence patterns of the substances existing within nerve fibres supplying the vas deferens blood vessels are clearly different from those found in nerve fibres innervating the organ wall. The majority of the noradrenergic fibres associated with blood vessels contain neuropeptide Y only, while non-noradrenergic perivascular nerves contain predominantly vasoactive intestinal polypeptide. The possibility of different sources of origin of the particular nerve fibre subpopulations supplying the porcine vas deferens and its blood vessels is discussed. Accepted: 23 October 1996  相似文献   

6.
Nitric oxide synthase (NOS) has previously been reported in a small population of postganglionic sympathetic neurons in the guinea pig. The present study of paravertebral ganglia and the inferior mesenteric ganglion aimed to classify these neurons according to their content of neuropeptides (calcitonin gene-related peptide, neuropeptide Y, vasoactive intestinal peptide) and the rate-limiting enzyme of catecholamine synthesis, tyrosine hydroxylase, by means of immunohistochemical and histochemical double-labelling techniques. NOS-containing neurons belonged to the non-catecholaminergic population of postganglionic neurons, and partial coexistence was found with neuropeptide Y and vasoactive intestinal peptide immunoreactivities but not with calcitonin gene-related peptide. However, most of the NOS-containing neurons contained none of the neuropeptides, thus representing a hitherto unrecognized population of postganglionic neurons. The findings show that NOS is localized to small but neurochemically highly specific populations of postganglionic neurons, which most likely reflects an association with target- and function-specific pathways.  相似文献   

7.
Retrograde neuronal tracing and immunohistochemical methods were used to define the neurochemical content of sympathetic neurons projecting to the sow retractor clitoridis muscle (RCM). Differently from the other smooth muscles of genital organs, the RCM is an isolated muscle that is tonically contracted in the rest phase and relaxed in the active phase. This peculiarity makes it an interesting experimental model. The fluorescent tracer fast blue was injected into the RCM of three 50 kg subjects. After a one-week survival period, the ipsilateral paravertebral ganglion S1, that in a preliminary study showed the greatest number of cells projecting to the muscle, was collected from each animal. The co-existence of tyrosine hydroxylase with choline acetyltransferase, neuronal nitric oxide synthase, calcitonin gene-related peptide, leu-enkephalin, neuropeptide Y, substance P and vasoactive intestinal polypeptide was studied under a fluorescent microscope on cryostat sections. Tyrosine hydroxylase was present in about 58% of the neurons projecting to the muscle and was found to be co-localized with each of the other tested substances. Within fast blue-labelled cells negative to the adrenergic marker, small populations of neurons singularly containing each of the other enzymatic markers or peptides were also observed. The present study documents the complexity of the neurochemical interactions that regulate the activity of the smooth myocytes of the RCM and their vascular components.  相似文献   

8.
Summary Serial cryostat and paraffin-embedded sections through the atrioventricular junction of the rat heart were studied at the light-microscopic level after indirect immunohistochemical staining (tyrosine hydroxylase, neuropeptide Y, C-terminal flanking peptide of neuropeptide Y immunoreactivities) or silver impregnation. The distribution of these immunoreactivities in the Hissian ganglion (Moravec and Moravec 1984) as well as the relationships of the Hissian ganglion cells with the surrounding structures have been studied to assess its function. The results suggest that the Hissian ganglion is composed of large multipolar neurons displaying both tyrosine hydroxylase (TH) and related peptide (neuropeptide Y, C-terminal flanking peptide of neuropeptide Y) immunoreactivities. The dendritic projections of these adrenergic cells penetrate the reticular portion of the atrioventricular node and the upper segments of the interventricular septum where they constitute sensory-like corpuscles. The hypothesis that the adrenergic neurons of the atrioventricular junction are involved in short proprioceptive feedback loops necessary for beat-to-beat modulation of cardiac excitability and intracardiac conduction can thus be suggested.  相似文献   

9.
The male rat major pelvic ganglion contains both sympathetic and parasympathetic neurons that supply the lower urinary and digestive tracts, and the reproductive organs. The aim of this study was to describe the distribution and identify potential targets of sensory and intestinofugal axons in this ganglion. Two putative markers of these projections were chosen, substance P for primary sensory axons and bombesin for myenteric intestinofugal projections. Varicose substance P-immunoreactive axons were associated only with non-noradrenergic (putative cholinergic) somata, and most commonly with those that contained vasoactive intestinal peptide. Immunoreactivity for substance P was also present in a small group of non-noradrenergic somata, many of which were immunoreactive for enkephalins, neuropeptide Y or vasoactive intestinal peptide. Bombesin immunoreactivity was found only in preterminal and terminal (varicose) axons, the latter of which were exclusively associated with non-noradrenergic somata that contain neuropeptide Y-immunoreactivity. Some varicose axons containing either substance P-or bombesin-immunoreactivity were intermingled with clumps of small, intensely fluorescent cells. These studies indicate that substance P-and bombesin-immunoreactive axons are likely to connect with numerically small, but discrete, populations of pelvic neurons.  相似文献   

10.
Summary The relationships of immunoreactive neuropeptide Y, enkephalin and tyrosine hydroxylase, on the one hand, and acetylcholinesterase histochemical activity, on the other, were studied in human lumbar sympathetic ganglia. Two thirds of the ganglion cells contained immunoreactive neuropeptide Y. Electron microscopically the immunoreaction was localized in the Golgi apparatus and in large dense-cored vesicles in the nerve endings. Most of the neuropeptide-containing neurons and nerve fibres were also reactive for tyrosine hydroxylase. Nerve fibres reactive for neuropeptide Y were found around ganglion cells regardless of their transmitter contents, whereas enkephalin-reactive nerve terminals surrounded only acetylcholinesterase-containing neurons. The results demonstrate that neuropeptide Y is colocalized with noradrenaline in most of the human sympathetic neurons and that the nerve fibres may innervate selectively the noradrenergic and cholinergic subpopulations of ganglion cells depending on the transmitters of the nerves.  相似文献   

11.
Combined retrograde tracing (using fluorescent tracer Fast Blue) and double-labelling immunofluorescence were used to study the distribution and immunohistochemical characteristics of neurons in the porcine caudal mesenteric ganglion projecting to the vas deferens and seminal vesicle. The distribution and immunohistochemical properties of neurons projecting to both organs were similar. As revealed by retrograde tracing, Fast Blue-positive neurons were located within the left and right ganglia, with a distinct predominance in the ipsilateral one. In the ipsilateral ganglion, the majority of the neurons were located caudally, along the dorso-lateral ganglionic border, suggesting a somatotopic organization of the ganglion. Immunohistochemistry revealed four populations of retrogradely labelled neurons (from the largest to the smaller one): tyrosine hydroxylase-positive/neuropeptide Y-negative (TH+/NPY-), TH+/NPY+, TH-/NPY-, TH-/NPY+. With respect to their surrounding nerve fibres, two subpopulations of the dye-labelled neurons could be distinguished. The small one consisted of solitary neurons receiving a strong calcitonin gene-related peptide- and Leu5-enkephalin-, and a less intense vasoactive intestinal peptide-immunoreactive innervation. The remaining neurons were poorly supplied by singular nerve fibres containing some of the investigated peptides. We conclude that the caudal mesenteric ganglion should be considered as a prominent source of adrenergic and/or NPY-positive innervation for the porcine male reproductive tract.  相似文献   

12.
The distribution and colocalization of neuropeptides and 5-hydroxytryptamine in the posterior portion of the large intestine of the toad was studied using single- and dual-label immunohistochemistry. Neurons containing colocalized galanin/somatostatin or vasoactive intestinal peptide alone were observed along intramural pelvic nerves. Some of the galanin/somatostatin neurons also contained 5-hydroxytryptamine. Synaptic boutons containing colocalized calcitonin gene-related peptide/vasoactive intestinal peptide were associated with the galanin/somatostatin neurons. The muscle of the large intestine was also innervated by axons containing galamin/somatostatin, vasoactive intestinal peptide/calcitonin gene-related peptide or vasoactive intestinal peptide alone. Nerve fibres containing calcitonin gene-related peptide/substance P, probably representing primary afferent nerves, were also associated with muscle bundles. Submucosal blood vessels carried dense plexuses of fibres containing vasoactive intestinal peptide alone or and calcitonin gene-related peptide/substance P. Adrenergic perivascular nerves also contained galanin and neuropeptide Y.  相似文献   

13.
Pelvic ganglia are mixed sympathetic-parasympathetic ganglia and provide the majority of the autonomic innervation to the urogenital organs. Here we describe the structural and histochemical features of the major pelvic ganglion in the male mouse and compare two different mouse strains. The basic structural features of the ganglion are similar to those in the male rat. Almost all pelvic ganglion cells are monopolar and most are cholinergic. All contain either neuropeptide Y (NPY) or vasoactive intestinal peptide (VIP), or both peptides together. The peptide coexistence varies between strains, with C57BL/6 mice having similar proportions of neurons with NPY alone, VIP alone or both peptides. In contrast, virtually all pelvic neurons in the Quackenbush-Swiss (QS) strain express NPY, i.e. the level of VIP/NPY coexistence is much higher. Cholinergic axons provide the major nerve supply to epithelia of reproductive organs, bladder smooth muscle and, as described previously, penile erectile tissue. They also provide a minor component of the smooth muscle innervation of the prostate gland, seminal vesicles and vas deferens. Virtually all non-cholinergic pelvic ganglion cells are noradrenergic and contain NPY. Their major target is smooth muscle of reproductive organs. This study shows that the male mouse pelvic ganglion bears many similarities to that in the rat, but that VIP/NPY colocalisation is much more common in the mouse. We also show that there are differences in peptide expression in parasympathetic pelvic neurons between strains of mice. These studies provide the framework for future investigations on neural regulation of urogenital function, particularly in transgenic and knockout models.  相似文献   

14.
The distribution and relative density of peptide-containing nerves was studied in the rat in order to assess the progression of neuronal changes during the postnatal development of the male genital system from the prepubertal age to adulthood. Testis, caput and cauda epididymis, ductus deferens, seminal vesicles, prostate and penis from 8-, 20-, 38-, and 70-day-old rats were sectioned and were immunostained with antisera to the neuropeptides calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY), and to a general neuronal marker, protein gene product 9.5 (PGP 9.5). The testicular parenchyma and caput epididymis did not show any immunoreactivity. Very scattered CGRP-containing nerves were present in 8-day-old rats; numerous VIP-, CGRP-, and NPY-peptide-containing nerves were observed in the cauda epididymis, ductus deferens, accessory glands and penis of 20-day-old rats. The number of nerves increased in 35-day-old rats while no changes were observed in more adult rats. A parallel increase was seen for the immunostain for PGP 9.5. These data suggest that peptide-containing nerves appear in the genital system after birth and reach a full development before the completion of puberty. Peptide-containing nerves were visible first in the interstitial area and then spread in the muscular coat of the ducts, glands and of the blood vessels. While CGRP- and NPY-containing nerves were distributed in the vicinity of the muscle cells, VIP-containing nerves were also observed in the subepithelial regions, suggesting a possible role of this neuropeptide in the control of epithelial functions.  相似文献   

15.
The distribution of neurotensin, neurokinin A, dynorphin A, galanin, somatostatin-28 (1-12), neuropeptide Y, vasoactive intestinal polypeptide, gastrin-releasing peptide, gamma-melanocyte stimulating hormone, alpha-neo-endorphin, angiotensin H, cholecystokinin-8, serotonin and tyrosine hydroxylase has been studied in the pretectal nuclei of the Cyprinus carpio: nuclei pretectalis superficialis parvicellularis and magnocellularis, pretectalis centralis, pretectalis, and pretectalis periventricularis dorsalis and ventralis using an indirect immunoperoxidase technique. We have found neuropeptide Y and serotonin immunoreactive fibres in all pretectal nuclei, whereas gastrin-releasing peptide immunoreactive fibres were visualized in the nuclei pretectalis superficialis parvicellularis and magnocellularis, pretectalis centralis. pretectalis and pretectalis periventricularis dorsalis; neurokinin A immunoreactive fibres in the nuclei pretectalis superficialis parvicellularis and magnocellularis and pretectalis periventricularis dorsalis; galanin immunoreactive fibres in the nuclei pretectalis superficialis parvicellularis, pretectalis centralis and pretectalis periventricularis dorsalis; and neurotensin immunoreactive fibres in the nucleus pretectalis periventricularis dorsalis. Additionally, immunoreactive cell bodies containing neuropeptide Y were observed in the nuclei pretectalis superficialis parvicellularis and pretectalis periventricularis dorsalis, and serotonin and tyrosine hydroxylase cell bodies were found in the nuclei pretectalis periventricularis dorsalis and ventralis respectively. The presence of the neuroactive substances found in the carp pretectal nuclei suggest that they might be involved in the regulation of certain functions within the visual system.  相似文献   

16.
Summary The distribution and relative density of peptide-containing nerves was studied in the rat in order to assess the progression of neuronal changes during the postnatal development of the male genital system from the prepubertal age to adulthood. Testis, caput and cauda epididymis, ductus deferens, seminal vescicles, prostate and penis from 8-, 20-, 38-, and 70-day-old rats were sectioned and were immunostained with antisera to the neuropeptides calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY), and to a general neuronal marker, protein gene product 9.5 (PGP 9.5). The testicular parenchyma and caput epididymis did not show any immunoreactivity. Very scattered CGRP-containing nerves were present in 8-day-old rats; numerous VIP-, CGRP-, and NPY-peptide-containing nerves were observed in the cauda epididymis, ductus deferens, accessory glands and penis of 20-day-old rats. The number of nerves increased in 35-day-old rats while no changes were observed in more adult rats. A parallel increase was seen for the immunostain for PGP 9.5. These data suggest that peptide-containing nerves appear in the genital system after birth and reach a full development before the completion of puberty. Peptide-containing nerves were visible first in the interstitial area and then spread in the muscular coat of the ducts, glands and of the blood vessels. While CGRP- and NPY-containing nerves were distributed in the vicinity of the muscle cells, VIP-containing nerves were also observed in the subepithelial regions, suggesting a possible role of this neuropeptide in the control of epithelial functions.  相似文献   

17.
This study investigated immunohistochemical properties of cholinergic neurons in the anterior pelvic ganglion (APG) of juvenile male pigs (n=7). Cholinergic neurons were identified using antibodies against choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). Immunoblotting was applied to verify the specificity of ChAT-immunostaining. Western blotting performed on APG tissue homogenates detected single immunoreactive protein with a molecular weight matching that of ChAT (71.6 kDa). It was found that many APG neurons expressed immunoreactivity to ChAT or VAChT (40% and 39% of the neurons, respectively). The analysis of adjacent sections from the ganglion revealed complete colocalization of ChAT and VAChT in these nerve cells. Furthermore, virtually all the ChAT-positive neurons were tyrosine hydroxylase (TH)-negative (non-adrenergic) but many of them displayed immunoreactivity to nitric oxide synthase (NOS), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) or somatostatin (SOM). There were also single nerve cell bodies that stained for neither ChAT nor TH. The comparison of the adjacent sections revealed that NOS, VIP, NPY and SOM were simultaneously co-expressed in the majority of the cholinergic somata. ChAT- or VAChT-positive varicose nerve terminals supplied nearly all neuronal profiles within the ganglion often forming loose basket-like formations surrounding the particular nerve cell bodies. The present study for the first time has revealed that nearly all non-adrenergic neurons in the porcine APG are cholinergic in nature, i.e. express immunoreactivity for ChAT and VAChT. Considering a high coincidence between the chemical coding of non-adrenergic (cholinergic) nerve fibres supplying some porcine male reproductive organs described in earlier papers and that of cholinergic pelvic neurons found in this study it is further concluded that pelvic ganglia are probably the major source of cholinergic innervation for the porcine urogenital system.  相似文献   

18.
Abstract: Two forms of pituitary adenylate cyclase-activating polypeptide (PACAP), the 38- and 27-amino-acid forms (PACAP38 and PACAP27, respectively), which share amino acid sequence homology with vasoactive intestinal peptide (VIP), were evaluated for their abilities to regulate sympathetic neuron catecholamine and neuropeptide Y (NPY) expression. PACAP38 and PACAP27 potently and efficaciously stimulated NPY and catecholamine secretion in primary cultured superior cervical ganglion (SCG) neurons; 100- to 1,000-fold higher concentrations of VIP were required to modulate secretion, suggesting that SCG neurons express the PACAP-selective type I receptor. PACAP38 elicited a sustained seven- to ninefold increase in the rate of NPY secretion and three-fold stimulation in the rate of catecholamine release. PACAP38 and PACAP27 produced parallel neuronal NPY and catecholamine release, but cellular levels of NPY and catecholamines were differentially regulated. Sympathetic neuron NPY content was decreased, whereas cellular total catecholamine levels were elevated by the PACAP peptides; total NPY and catecholamine levels (secreted plus cellular content) were increased. In concert with the increased total peptide and transmitter production, pro-NPY and tyrosine hydroxylase mRNA levels were elevated. Furthermore, PACAP38 was more efficacious than PACAP27 in regulating pro-NPY and tyrosine hydroxylase mRNA. SCG neuronal expression of mRNA encoding the type I PACAP receptor further supported the studies demonstrating that sympathetic neuronal levels of NPY and catecholamine content and secretion and mRNA are differentially regulated by the PACAP peptides.  相似文献   

19.
Summary Immunohistochemistry has been used to demonstrate that neuropeptide Y, dopamine--hydroxylase, calcitonin gene-related peptide or substance P are colocalized with vasoactive intestinal polypeptide and choline acetyltransferase in subpopulations of neurons in cranial parasympathetic ganglia of rat. These comprise the ciliary, sphenopalatine, otic, glossopharyngeal-vagal and internal carotid ganglia. In the ciliary and glossopharyngeal-vagal ganglia tyrosine hydroxylase is also found in such neurons. The findings emphasize that the combined localization of dopamine--hydroxylase and neuropeptide Y or the presence of tyrosine hydroxylase is not exclusively a marker for peripheral adrenergic neurons. Further, the co-localization of calcitonin gene-related peptide and substance P is not a decisive indication that a neuron is sensory in nature. It is discussed whether the presence of the enzymes and peptides other than vasoactive intestinal polypeptide is a remnant of a different expresion during ontogenesis or indicates target-specific functions in the adult.  相似文献   

20.
Summary Non-hairy and hairy human skin were investigated with the use of the indirect immunohistochemical technique employing antisera to different neuronal and non-neuronal structural proteins and neurotransmitter candidates. Fibers immunoreactive to antisera against neurofilaments, neuron-specific enolase, myelin basic protein, protein S-100, substance P, neurokinin A, neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) were detected in the skin with specific distributional patterns. Neurofilament-, neuron-specific enolase-, myelin basic protein-, protein S-100-, substance P-, neurokinin A-and vasoactive intestinal polypeptide (VIP)-like immunoreactivities were found in or in association with sensory nerves; moreover, neuron-specific enolase-, myelin basic protein-, protein S-100, neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide (VIP)-like immunoreactivities occurred in or in association with autonomic nerves. It was concluded that antiserum against neurofilaments labels sensory nerve fibers exclusively, whereas neuron-specific enolase-, myelin basic protein- and protein S-100-like immunoreactivities are found in or in association with both sensory and autonomic nerves. Substance P- and neurokinin A-like immunoreactivities were observed only in sensory nerve fibers, and neuropeptide Y- and tyrosine hydroxylase-like immunoreactivities occurred only in autonomic nerve fibers, whereas vasoactive intestinal polypeptide (VIP)-like immunoreactivity was seen predominantly in autonomic nerves, but also in some sensory nerve fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号